ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach

C. Luchini1, F. Bibeau2, M. J. L. Ligtenberg3,4, N. Singh5, A. Nottegar6, T. Bosse7, R. Miller8, N. Riaz9, J.-Y. Douillard10, F. Andre11* & A. Scarpa12

1Department of Diagnostics and Public Health, University of Verona, Verona, Italy; 2Department of Pathology, Caen University Hospital, Caen, France; Departments of 3Human Genetics; 4Pathology, Radboud university medical center, Nijmegen, The Netherlands; 5Department of Cellular Pathology, Barts Health NHS Trust, London, UK; 6Department of Surgery, San Bortolo Hospital, Vicenza, Italy; 7Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands; 8Department of Oncology, University College London, London, UK; 9Department of Radiology and Imaging Sciences, Memorial Sloan Kettering Cancer Center, New York, USA; 10European Society for Medical Oncology, Lugano, Switzerland; 11Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France; 12ARC-Net Research Centre, University of Verona, Verona, Italy

*Correspondence to: Prof. Fabrice Andre, ESMO Head Office – Scientific and Medical Division, Via Ginevra 4, Lugano CH-6962, Switzerland. Tel: +41-91-973-1999; Fax: +41-91-973-1902; E-mail: education@esmo.org

Background: Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having microsatellite instability (MSI). Therefore, MSI is a marker of dMMR. MSI/dMMR can be identified using immunohistochemistry to detect loss of MMR proteins and/or molecular tests to show microsatellite alterations. Together with tumour mutational burden (TMB) and PD-1/PD-L1 expression, it plays a role as a predictive biomarker for immunotherapy.

Methods: To define best practices to implement the detection of dMMR tumours in clinical practice, the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project, based on a systematic review-approach, to generate consensus recommendations on the: (i) definitions related to the concept of MSI/dMMR; (ii) methods of MSI/dMMR testing and (iii) relationships between MSI, TMB and PD-1/PD-L1 expression.

Results: The MSI-related definitions, for which a consensus framework was used to establish definitions, included: 'microsatellites', 'MSI', 'DNA mismatch repair' and 'features of MSI tumour'. This consensus also provides recommendations on MSI testing; immunohistochemistry for the mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 represents the first action to assess MSI/dMMR (consensus with strong agreement); the second method of MSI/dMMR testing is represented by polymerase chain reaction (PCR)-based assessment of microsatellite alterations using five microsatellite markers including at least BAT-25 and BAT-26 (strong agreement). Next-generation sequencing, coupling MSI and TMB analysis, may represent a decisive tool for selecting patients for immunotherapy, for common or rare cancers not belonging to the spectrum of Lynch syndrome (very strong agreement). The relationships between MSI, TMB and PD-1/PD-L1 expression are complex, and differ according to tumour types.

Conclusions: This ESMO initiative is a response to the urgent questions raised by the growing success of immunotherapy and provides also important insights on the relationships between MSI, TMB and PD-1/PD-L1.

Key words: microsatellite instability (MSI), tumour mutational burden (TMB), tumour mutational load (TML), next-generation sequencing (NGS), immunotherapy

© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Introduction

Cancers harbouring a defective mismatch repair (dMMR) mechanism are very often hypermutated and accumulate mutations in monomorphic microsatellites (short tandem repeats) that are particularly prone to mismatch errors. This condition is termed microsatellite instability (MSI), which can be tested using immunohistochemistry (IHC) and molecular tests, including classic [polymerase chain reaction (PCR)]-based microsatellite testing and novel next-generation sequencing (NGS) approaches.

MSI is the hallmark of Lynch syndrome and constitutional mismatch repair deficiency (CMMRD). MSI is found in a varying proportion of sporadic cancers that belong to the spectrum of cancer types that occur in this syndrome, including colorectal, endometrial, gastric, small intestine, urothelial, central nervous system and sebaceous gland neoplasms [1–3].

Recent evidence demonstrating that MSI is a predictive biomarker for immunotherapy [4–7] has increased the clinical request from oncologists for dMMR testing on many different cancer types. Therefore, there is now a pressing need to identify where testing is appropriate and how best to perform it. For this reason, standard definitions of MSI, related concepts and consensus recommendations on MSI testing are urgently required.

In addition to MSI, tumour mutational burden (TMB; also referred to as tumour mutational load—TML) and the expression of the immune checkpoint programmed cell death protein 1 (PD-1) and its ligand PD-L1 represent other extensively studied biomarkers that may predict response to immunotherapy [8–12]. However, the relationship between these biomarkers is complex and it remains unclear whether employing a combination of biomarkers is superior to relying on a single marker [13–15].

To address these issues, the European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) launched a collaborative project to generate, specifically in the framework of immunotherapy, consensus recommendations on the: (i) most important definitions related to the concept of MSI; (ii) methods of MSI testing and how to measure MSI in cancer and (iii) relationships among MSI, TML and PD-1/PD-L1 expression. This consensus generating process was designed using a systematic review-based approach.

Members of the working group have been selected among professionals with high standard records on scientific activity and routine clinical work on molecular testing of cancers, and comprised three medical oncologists (FA, J-YD, RM), four senior pathologists/molecular pathologists (FB, TB, NS, AS), a radiation oncologist and associate director for immunogenomics programme (NR) and a clinical molecular geneticist (MJLL). Two junior pathologists (CL and AN) have been involved for their expertise in pathology/molecular pathology and systematic reviews.

Systematic review to generate consensus recommendations for MSI definition

There are generally accepted definitions of MSI and related concepts in the literature, but consensus recommendations for standard definitions represent an important basis for further discussion. To derive the solid definitions on MSI and related concepts, we carried out a systematic review to find all existing consensus/guidelines or surveys on MSI, searching the PubMed database up to 7 September 2018. The search terms used in PubMed included combinations of the following keywords (‘microsatellite’ OR ‘MSI’ AND (‘glossary’ OR ‘survey’ OR ‘guidelines’)). We also considered the lists of references of all articles and major reviews included. Studies were considered eligible for this aim if they met the following inclusion criteria: (i) consensus or guidelines of survey study; (ii) providing MSI or dMMR definition. To generate standardised definitions, we adopted the words most commonly used as the definition in each study; the final definitions we provide have been obtained through consensus among members of this collaborative project and members of the ESMO TR and PM WG.

Systematic review to generate consensus recommendations on MSI testing and how to measure MSI in cancer

There are different methods to assess MSI in cancer, and they can be subdivided into two main groups: (i) defective expression of mismatch repair (MMR) proteins as determined by IHC and (ii) MSI determination with molecular tests. To derive consensus recommendations on MSI testing and how to measure MSI in cancer, we decided to perform a systematic review of all the existing MSI-based clinical trials to find all methods used to determine MSI. We focussed on clinical trials as they often utilise methods that may be employed broadly in clinical practice. We searched the clinical trials database (https://www.clinicaltrials.gov, last accessed 1 August 2018) for all MSI-related terms. In particular, search terms used in the database were ‘cancer’ in the box named ‘condition or disease’, and ‘microsatellite instability’, ‘MSI’, ‘MSI high’, ‘mismatch repair deficiency’ and ‘dMMR’ in the box named ‘other terms’. We also used all the previously identified (see point 1) MSI-based consensus/guidelines useful for the specific aim of point 2 to complete the MSI testing scenario. The results were summarised and used for discussion in order to reach final recommendations through consensus among members of this collaborative project and members of the ESMO TR and PM WG.

Systematic review on the relationships involving MSI, PD-1/PD-L1 expression and TMB in cancer

A growing body of evidence suggests that MSI, TMB and PD-1/PD-L1 expression are three biomarkers, each of which is associated with an increased response rate to immunotherapy.
However, relationships between them are complex and may differ on the basis of tumour type and location. In order to clarify the existence of any potential association between MSI, TMB determined by NGS and PD-1/PD-L1 expression, we conducted the first systematic review on this topic. Studies were considered eligible if they met the following inclusion criteria: (i) use of NGS to determine TMB; (ii) use of standardised methods to assess MSI and PD-1 and/or PD-L1 expression; (iii) presence of matched data about TMB and MSI and PD-1/PD-L1 expression; (iv) in the case of aggregated data on PD-1 ligands (e.g. PD-L1 and PD-L2), presence also of separated data on PD-L1 expression; (v) presence of data about any potential observed association among TMB, MSI and PD-1/PD-L1 expression; (vi) unequivocal diagnosis of sporadic, single cancer; (vii) publication in a peer-reviewed journal in English language. Exclusion criteria were (i) no mention of cancer, (ii) no mention of terms NGS, TMB, MSI and PD-1/PD-L1 in the title/abstract; (iii) assessment of the investigated parameters with non-standardised methods; (iv) case report; (v) in vitro or animal studies. We searched the PubMed database up to 30 June 2018. The search terms used in PubMed included combinations of the following keywords: ('PD-1' OR 'PD-L1' OR 'programmed cell death protein 1' OR 'programmed cell death ligand 1' OR 'CD274' OR 'CD279' OR 'immunotherapy' OR 'checkpoint') AND ('NGS' OR 'high-throughput' OR 'sequencing' OR 'next-generation' OR 'mutational load' OR 'mutation load' OR 'mutational burden' OR 'mutation burden') AND ('microsatellite' OR 'MSI' OR 'MMR' OR 'mismatch repair' OR 'MMRd' OR 'dMMR') AND ('neoplasm' OR 'neoplasms' OR 'cancer' OR 'cancers' OR 'carcinoma' OR 'carcinomas' OR 'tumour' OR 'tumours' OR 'malignancy' OR 'malignancies' OR 'neoplasia'). We also considered the lists of references of all articles and major reviews included. Following the searches as outlined above, duplicates were removed, and a final list of articles was drawn up. For each article, we extracted information on: authors; year of publication; country; type of cancer; all available information on the methods of NGS; methods to assess MSI; methods (including clones and their thresholds) used to determine PD-1/PD-L1 expression; key findings about any potential association among TMB, MSI and PD-1/PD-L1 expression. If precise numbers on TMB, MSI and PD-1/PD-L1 expression were provided or were extractable from the selected manuscripts, they were used to create Venn diagrams to graphically summarise these findings, allowing of a specific bioinformatic program (https://www.meta-chart.com, last accessed 8 August 2018). Furthermore, to provide indications for specific tumour types where MSI status could be determined with a reliable rationale, we also used all systematic reviews on MSI [searched on PubMed database up until 15 September 2018 with the following search strategy: ('MSI' OR 'microsatellite') AND ('systematic review' OR 'meta-analysis')], the MSI-ESMO factsheet (https://oncologypro.esmo.org/Education-Library/Factsheets-on-Biomarkers/Microsatellite-Instability-Defective-DNA-Mismatch-Repair, last accessed 15 September 2018) and all manuscripts selected for point 3 to build a summary table of MSI prevalence in different cancer types. Finally, we hand-searched other potential important references on this topic, setting as a limit the analysis of MSI in at least 10 000 cancer patients.

Results

Consensus recommendations for definition of MSI and MSI-related terms

The literature search identified globally 1154 unduplicated articles, 1088 of which were excluded after reviewing their title/abstract, which left 66 articles eligible for full text review. After applying our inclusion criteria, 18 articles were selected for reviewing standardised definitions regarding MSI and MSI-related terms [17–34].

Definition of microsatellites. Microsatellites, also named short tandem repeats, are repetitive DNA sequences that are distributed along the genome, in both coding and noncoding regions. Microsatellites are repetitive sequences, composed of repeats of a sequence that ranges in length from one to six bases. Although they are highly polymorphic among different subjects (number of repeats of sequence varies between individuals), microsatellites are typically the same length in the patient’s germline DNA and in the somatic DNA of their tumour. Their repetitive nature renders them particularly sensitive to DNA mismatching errors, which can occur during DNA replication or iatrogenic damage [35, 36].

Definition of MSI. An MSI is a condition of genetic hypermutability resulting from defective DNA MMR. It is characterised by clustering of mutations in microsatellites typically consisting of repeat length alterations. The presence of MSI represents phenotypic evidence that MMR is not functioning normally [37].

Definition of DNA MMR. DNA MMR is a highly conserved mechanism used to restore DNA integrity after the occurrence of mismatching errors, including single base mismatches or short insertions and deletions. Four genes that play a critical role in this process include: MLH1 (mutS homologue 1), MSH2 (mutS homologue 2), MSH6 (mutS homologue 6) and PMS2 (postmeiotic segregation increased 2) [38]. The four homonym proteins MLH1, MSH2, MSH6 and PMS2 codified by these genes function in heterodimers, namely MLH1-MSH2 and MSH2-MSH6. The inactivation of one of these genes, which can occur due to germ-line and/or somatic mutations or to epigenetic silencing, results in a defective MMR (dMMR) mechanism.

Comments from consensus panel: MLH1 and MSH2 are obligatory partners of heterodimers. PMS2 can form a heterodimer only with MLH1, MSH6 can form a heterodimer only with MSH2. However, MLH1 and MHS2 can form heterodimers with other MMR proteins, namely MSH3, MLH3 and PMS1. In general, mutations in MLH1 and MSH2 result in subsequent proteolytic degradation of the mutated protein and its secondary partner, PMS2 and MSH6, respectively. Conversely, mutations in PMS2 or MSH6 may not result in proteolytic degradation of its primary partner, as MSH6 can be substituted in the heterodimer by MSH3, and PMS2 can be substituted in the heterodimer by PMS1 or MLH3.
Definition of MSI/dMMR tumour. A dMMR tumour is a tumour that accumulates thousands of mutations, particularly clustered in microsatellites and consisting in repeat length alterations, resulting in MSI. Therefore, MSI is a marker of dMMR, and characterises a hypermutable state of cells.

Comments from consensus panel: The use of the very same IHC and PCR tests serves to recognise dMMR/MSI in any sporadic cancer type belonging to the spectrum of cancers associated with Lynch syndrome (colorectal, endometrial, small intestine, urothelial, central nervous system and sebaceous gland). For tumour types not belonging to the spectrum reported above, there are insufficient data to draw a definitive recommendation.

The IHC method is based on the fact that MMR proteins are ubiquitously expressed in cell nuclei. Most mutations in MMR genes interfere with dimerisation, resulting in the proteolytic degradation of the heterodimers and consequent loss of both obligatory and secondary proteins. Thus, mutations in MLH1 are associated with IHC loss of both MLH1 and PMS2, while mutations in MSH2 are associated with IHC loss of both MSH2 and MSH6.

Conversely, when mutations occur in genes of the secondary proteins (i.e. PMS2 and MSH6), the heterodimers may remain stable and there is no concurrent loss of the obligatory partner proteins. This is because the function of the secondary proteins may be compensated by other proteins, such as MSH3 instead of MSH6, and MLH3 or PMS1 instead of PMS2 [47]. Consequently, the PMS2 antibody detects all cases that harbour either MLH1 or PMS2 abnormalities [48], and the MSH6 antibody detects all cases that harbour either MSH2 or MSH6 abnormality. MLH1 and MSH2 alone do not recognise cases that have PMS2 or MSH6 abnormalities.

One disadvantage of IHC is that it may give rise to both positive and negative immunostaining results not reflecting the real status of MMR machinery due to technical or biological reasons. Technical factors that may result in false negative immunostainings are mainly due to pre-analytical issues, such as tissue fixation [49]. Aberrant staining patterns may also be observed, including cytoplasmic, dot-like or perinuclear staining [50]. The presence of an internal positive control, such as normal mucosa, lymphocytes or stromal cells is mandatory for interpretation of results. Biological reasons responsible for positive immunostainings that do not reflect the actual deficiency of the MMR machinery include missense mutations in any MMR gene resulting in mutant primary proteins that are catalytically inactive but antigenically intact [50]. Biological reasons for positive immunostainings that may be associated with either functional or defective activity of MMR depend on lack of MMR or MSH6 that are substituted by another MMR secondary partner (MSH3 replacing MSH6, MLH3 or PMS1 replacing PMS2). This reinforces our recommendation to use all four antibodies, either concurrently or sequentially, and move to MSI-PCR (recommendation B) whenever there is any doubt in IHC interpretation. The two-antibody screening approach with PMS2/MSH6 may be considered as a cost-effective alternative, pending that in the case of negative, focal/patchy or weak immunostaining parallel results in microsatellites and consisting in repeat length alterations, resulting in MSI. Therefore, MSI is a marker of dMMR, and characterises a hypermutable state of cells.

Consensus recommendations on MSI testing and how to measure MSI in cancer

The search in the clinical trials database (https://www.clinicaltrials.gov, last accessed 1 August 2018) identified 31 clinical trials worldwide, of which 5 are completed [7, 43–45] and 26 are ongoing [https://doi.org/10.1093/annonc/mdx367.020, last accessed 22 September 2018]. Their main characteristics are summarised in supplementary Tables S1 and S2, available at Annals of Oncology online. The tumour type most frequently studied (>60% of clinical trials) is metastatic colorectal cancer, but there is also a significant proportion of studies focussing on other cancer types including advanced endometrial carcinoma, metastatic prostate cancer, gastric cancer and generic solid tumour studies. Most of these clinical trials indicates the methods required to assess MSI. For the majority (>80%), both IHC and molecular tests were utilised to define MSI status. Where IHC was used, all four MMR proteins, MLH1, MSH2, MSH6 and PMS2, are always tested in these studies. When PCR-based molecular testing was employed, one of the two panels each comprising five microsatellites was utilised: one testing five microsatellite markers. In addition, four trials used a NGS-based approach as the molecular test (supplementary Table S1, available at Annals of Oncology online).

Recognising the variability of the methods used in clinical trials that highlight lack of standards, as neither IHC nor molecular tests were indicated as the preferred methods, and taking into account recommendations by existing guidelines, after a consensus among members of this collaborative project and members of the ESMO TR and PM WG, we generated the following recommendations for MSI testing. Comments from the consensus panel have been added to each recommendations as explanatory notes.

Recommendation A. The first method for MSI testing is MMR IHC. IHC is a widely available laboratory test and utilises antibodies against the four MMR proteins: MLH1, MSH2, MSH6 and PMS2. Grade of consensus: strong (8.7/10).

Comments from consensus panel: The use of IHC for the four MMR proteins is required to assess dMMR in any sporadic cancer type belonging to the spectrum of cancers found in Lynch syndrome [colorectal, endometrial, small intestine, urothelial, central nervous system (gliomas/glioblastomas) and sebaceous gland]. For tumour types not belonging to the spectrum reported above, there are insufficient data to draw a definitive recommendation.
appropriate partner protein, is a decision left to local organisational, timing and cost considerations.

IHC can be carried out on biopsies or surgical specimens if available [surgical specimen as first choice: grade of consensus: low (6.6/10)]. The main advantages of performing IHC on biopsies are: (i) the better degree of fixation of biopsies than surgical specimen and (ii) the usefulness of knowing MSI status for the first multidisciplinary tumour board, which may change subsequent management, especially in the metastatic setting. The advantages to using surgical specimens are: (i) the analysis of more cells than those present on biopsies; (ii) the possibility to select the best specimen for IHC; (iii) the presence of internal controls (e.g. normal mucosa, inflammatory cells) but which are usually present on biopsies; (iv) the possibility to overcome tumour heterogeneity (especially with MSH6 staining), due to the analysis of a larger amount of tissue, and (v) in the specific frame of immunotherapy, the possibility to also perform a reliable IHC for PD-1 and PD-L1 on the same material.

Recommendation B. MSI-PCR molecular testing is indicated in case of indeterminate IHC results, including disagreement or difficulties in interpreting IHC or in the case of loss of only one heterodimer subunit (e.g. only MLH1 or only PMS2 and not both). The traditional molecular test is based on PCR amplification of microsatellite markers with two possible panels: one using five microsatellites comprising two mononucleotide (BAT-25 and BAT-26) and three dinucleotide (D5S346, D2S123 and D17S250) repeats, and the other using five poly-A mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24, NR-27). The five poly-A panel is the recommended panel given its higher sensitivity and specificity. MSI is defined as loss of stability in ≥ 2 out of the five microsatellite markers.

Comments from consensus panel: The use of MSI-PCR molecular testing is indicated to assess dMMR in any sporadic cancer type belonging to the spectrum of cancers found in Lynch syndrome: colorectal, endometrial, small intestine, urothelial, ovarian cancers. NGS-based MSI testing has the potential to become the method of choice for all tumour types, including rare cancers, not belonging to the spectrum of Lynch syndrome. Grade of consensus: very strong (9/10).

Recommendation C. An NGS represents an alternative molecular test to assess MSI [56, 58]. One main advantage of this, is the opportunity to couple MSI analysis with the determination of TMB. NGS permits parallel high-throughput sequencing of a high number of microsatellites and genes, and thus it may also identify other targetable alterations suitable for treatments other than immunotherapy, e.g. KRAS mutations in colorectal cancer, EGFR mutations in non-small-cell lung cancer (NSCLC), BRAF mutations in melanoma, BRCA1 and BRCA2 mutations in breast and ovarian cancers. NGS-based MSI testing has the potential to become the method of choice for all tumour types, including rare cancers, not belonging to the spectrum of Lynch syndrome. Grade of consensus: very strong (9/10).

Relationships among MSI, PD-1/PD-L1 expression and TMB in cancer

As MSI, TMB and PD-1/PD-L1 expression are biomarkers that have been associated with an increased response rate to immunotherapy, we conducted a systematic review to clarify the existence of any potential association among these markers. The literature search identified globally 158 unduplicated articles, 126 of which were excluded after reviewing their title/abstract, which left 32 articles eligible for full text review. After applying our inclusion and exclusion criteria, 18 articles (for 17 cohorts) were selected for this systematic review [7, 59–75] (supplementary Figure S1, available at Annals of Oncology online).

Epidemiological and methodological data. As summarised in supplementary Table S3, available at Annals of Oncology online, the 17 articles included in our meta-analysis concerned 148 655...
patients with different types of cancer; however, complete data of all the investigated parameters (TMB, MSI and PD-1/PD-L1 expression) were available for only a portion of patients in some studies [59, 62, 75]. Most of cohorts (10/17, 59%) were specifically focussed on tumours of the digestive system [7, 63, 65–69, 71–73, 75], but the presence of large-cohort studies investigating TMB, MSI and PD-1/PD-L1 expression in many tumour types (over 100 tumour types) [59, 62, 74] ensured an in-depth analysis of a wide spectrum of different cancers. The vast majority of the cohorts reported data on patients from the USA, followed by Asian and European subjects. The majority of the manuscripts (59%) investigated original cohorts of patients [7, 61, 63–70, 75], whereas data derived from external (public or private) databases were used in some papers [59, 62, 71–74].

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.

Complete data about TMB, MSI and PD-1/PD-L1 of one cohort of patients was reconstructed by merging two studies on the same tumours [68, 69].

TMB was assessed using whole-exome sequencing in 5 (29%) studies [7, 59, 60, 69, 70], and using multigene cancer panels in the remaining 12 (71%), where TMB-high is variably defined as TMB-loss of both MLH1 and PMS2, while mutations in MSH2 are associated with TMB-loss of both MSH2 and MSH6. There exist isolated losses of PMS2, MSH2 or MSH6, this strengthening the recommendation to use all four antibodies.
(3.4%) and NSCLCs (0.7%) compared with colorectal (13.4%) and oesophagogastric adenocarcinomas (14.6%) ($P < 0.05$ for all these differences), or to the lack of MSI-high cases as observed in melanomas. Lastly, high percentages of concordance of TMB-high and MSI-high was observed in colorectal cancers (44.2%), oesophagogastric adenocarcinomas (27.7%) and endometrial cancers (31.0%) compared with ‘all cancers’ group, melanomas and NSCLCs ($P < 0.05$ for all these differences).

Concluding remarks of consensus panel considering tumour types

To provide further indications for the specific tumour type where MSI status could be tested with a reliable rationale, the consensus panel agreed on a summary table for MSI testing (Table 2). With the search strategy for this specific point, we initially found 205 manuscripts. After screening all the full-texts of such manuscripts,
6 of them were selected to build the summary table [77–82]. Another one hand-searched paper, investigating MSI status in more than 10,000 cancer patients, was selected to complete this subanalysis [6].

As indicated in Table 2, the most important cancer types where MSI testing should be carried out using IHC to assess MMR proteins status and MSI-PCR or NGS are: endometrial, intestinal (colorectal and small bowel), gastric, oesophageal (adenocarcinomas and not squamous cell carcinoma), ovarian and glioblastoma. For tumour types with low frequency of MSI and little data available on the reliability of IHC and MSI-PCR, MSI testing should be carried out using NGS. It is important to note that MMR-deficient tumours are identified more often in early-stage disease of different cancer types (defined as stage < IV), while this proportion decreases in advanced and metastatic settings [6]. Indeed, the contribution to the percentages indicated in Table 2 (which regard all stages tumours) is mainly provided by early stages tumours. At the same time, it is also true that MSI late stages derive from MSI early stages tumours, and the main aim of Table 2 is reporting the most important tumour types that may exhibit MSI and should be taken into account as potential targets for immunotherapy.

On the basis of tumour type(s) and familial history, lastly, genetic counselling should be warranted to identify patients with hereditary cancer syndromes [83]. This approach may be implemented by direct collaboration among surgeons, pathologists, oncoologists and geneticists, and/or with establishing multidisciplinary tumour boards [84].

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>MSI prevalence (all stages)</th>
<th>Specific MSI-associated histotype, if any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic tumour types belonging to the spectrum of Lynch syndrome that can be tested using IHC and MSI-PCR or NGS (testing is indicated for stage IV cancers, whose MSI prevalence is lower than that of earlier stages)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>17%</td>
<td>Medullary, mucinous, poorly differentiated neuroendocrine</td>
</tr>
<tr>
<td>Endometrial</td>
<td>20%</td>
<td>Lower uterine segment-located, undifferentiated/dedifferentiated, mixed morphology, tumours showing high levels of tumour-infiltrating lymphocytes/lymphoid stroma</td>
</tr>
<tr>
<td>Gastric-oesophageal</td>
<td>13%</td>
<td>Adenocarcinoma (MSI up to 39% in case of carcinoma with lymphoid stroma, and absent in oesophageal squamous cell carcinoma)</td>
</tr>
<tr>
<td>Small intestine</td>
<td>8.3%</td>
<td>Including duodenum and ampulla of Vater</td>
</tr>
<tr>
<td>Ovarian</td>
<td>3.5%–10%</td>
<td>Endometrioid, clear cell</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>6%–13%</td>
<td></td>
</tr>
<tr>
<td>Unknown primary</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>Cervical</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Extrahepatic bile duct</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>Pancreatic</td>
<td>1%–7%</td>
<td>Medullary, IPMN-associated, periampullary (when the origin from ampulla, terminal bile duct or pancreatic duct is uncertain)</td>
</tr>
<tr>
<td>Prostate</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Non-small-cell lung cancer</td>
<td>< 1%</td>
<td></td>
</tr>
<tr>
<td>Head and neck</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>NS</td>
<td>1% uveal melanoma</td>
</tr>
<tr>
<td>Sarcomas</td>
<td>2%</td>
<td>Uterine, peritoneal and retroperitoneal</td>
</tr>
<tr>
<td>Anal</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

IHC, immunohistochemistry; MSI-PCR, microsatellite instability-polymerase chain reaction; NGS, next-generation sequencing; NS, no significant evidence.

Open questions and perspectives from the consensus panel

Due to the recent successes of immunotherapy in several cancer types, clarifying the MSI landscape in cancer is becoming an urgent clinical necessity. In this consensus report, specific recommendations on MSI definition and testing in cancer are presented. Furthermore, the relationship of MSI with TMB and PD-1/PD-L1 expression in different neoplasms was explored; at the same time, it has to be highlighted that for MSI tumours further analysis for TMB or PD-1/PD-L1 expression is not required to receive immunotherapy. We have used a systematic review approach since it represents the most rigorous scientific method to explore a topic, and to generate specific recommendations; we coupled this approach with a consensus obtained among members of this collaborative project and members of the ESMO TR and PM WG.

The first consensus recommendations regarded the identification of all the most relevant terms linked to the concept of MSI.
In the literature, there are several different definitions of MSI and related variables, thus we decided to provide expert consensus-based clear definitions of all these concepts. In depth understanding of the correct meaning of all these terms is the ideal basis for approaching patients with MSI tumours. This glossary may be useful not only for oncologists/clinicians but also for pathologists, researchers and drug developers alike.

The second consensus recommendations regarded MSI testing and how to quantify MSI in cancer. Reviewing all clinical trials based on MSI and also the existing guidelines on MSI testing, we provided expert consensus-based recommendations on MSI testing. We indicated that IHC currently represents the first test to determine dMMR and its associated MSI in cancer belonging the spectrum of Lynch syndrome associated tumours, but we also provided specific comments and recommendations on the most relevant aspects that can affect IHC analysis during routine clinical practice. IHC is a widely available technique used in most laboratories around the world, and knowing its advantages and limitations is the most important aspect to correctly apply this important tool for assessing MSI. The molecular approach is mainly based on PCR, and here we provided specific recommendations also for this type of test. NGS is another potential type of test for investigating MSI, the main advantage being the possibility to also determine tumour mutation burden, along with other possibly targetable alterations. TMB, with MSI and PD-1/PD-L1 expression may be important indeed in predicting a higher rate of response to immunotherapy, and as such the last part of our study explores this interesting topic.

We found that PD-1/PD-L1 expression demonstrates great variability throughout all cancer types, but a common aspect is represented by their expression even in MSI negative and/or TMB-low cases. One of the most important aspects that merits consideration is that it is possible to have a TMB-high in absence of MSI, whereas MSI-high with TMB-low is rare (except for endometrial cancer) (Figure 1). While high percentages of concordance of TMB-high and MSI-high have been described for gliomas, colorectal and oesophagogastric adenocarcinomas, for anal cancers and oesophageal squamous cells carcinomas there is an inverse relationship [64, 66, 72, 74, 75].

These tumour types share two important risk factors: human papillomavirus (HPV) and smoking [85, 86]. Tumours positive for HPV and smoking-associated cancers have been suggested to harbour higher TMB in comparison with HPV-negative or non-smoking counterparts, independently from MSI status [72, 87, 88], although the influence of HPV on TMB is still debated [89]. In anal cancers and oesophageal squamous cell carcinoma these reasons may therefore explain, not only the lack of association between TMB and MSI, but also the considerable percentages of a high MSI-independent PD-L1 expression. Genomic analyses have shown that particular mutational signatures can contribute to high TMB independently from MSI status. These include BRCA1/2 (breast cancer genes 1 and 2) and APOBEC deficiency, neoantigen load, ultraviolet rays exposure and mutations affecting TP53 and polymerase e (POLE) (supplementary Figure S2, available at Annals of Oncology online) [7, 59, 70, 90–95].

Interestingly, MUC16 mutations may be associated with higher TMB, better survival outcomes and immune response in patients with gastric cancer [96]. Lastly other tumour intrinsic and extrinsic factors are also involved in influencing the complex interactions among MSI, TMB and PD-1/PD-L1 expression, such as tumour infiltrating-lymphocytes and the microbiota (supplementary Figure S2, available at Annals of Oncology online) [95, 97].

A wide range of response rates to immunotherapy has been described also in tumours with low TMB, absence of MSI and even without PD-1/PD-L1 expression, indicating that immunotherapy response is also likely driven by other biomarkers [72]. Notably, in gastric cancer Epstein-Barr virus (EBV) has demonstrated a key role in predisposing response to immunotherapy, independently from TMB and MSI [63, 71, 97]. In the variant of gastric carcinoma with lymphoid stroma, PD-L1 is expressed on tumour cells independently from MSI and even from the presence of EBV [63]. Melanomas and NSCLC also show some peculiarities. Indeed, as recently reported by Vanderwalde et al., there are no MSI cases in melanomas, but the percentage of concordance between high TMB and PD-L1 expression is significant (32%) [72]; similarly, in NSCLC, MSI cases are very rare (1.1%), but there is a very high percentage of PD-L1 positive cases (75% of cases, using as total the number of cases with TMB-high and/or MSI and/or PD-L1 positive), although in NSCLC PD-L1 and TMB-high have been demonstrated to be independent [98]. Although TMB, MSI and PD-1/PD-L1 expression represent important indicators for immune checkpoint blockade therapy, further studies are therefore needed to find new variables able to predict response to immunotherapy.

One of the most important aspects of this systematic review is represented by the usefulness of NGS that emerged in assessing not only TMB but also MSI, generating promising data that may address immune checkpoint blockade therapy. Notably, an estimation of TMB can also be made with targeted panels, avoiding the costs of whole-exome or of whole-genome sequencing [99, 100]. NGS can also determine MSI status [101–103]; a recently developed ‘MSIsensor’ combines NGS with biostatistics to address MSI in tumour samples [101, 102]. It has already been applied by two studies selected for this systematic review [59, 66]. In the framework of immunotherapy, NGS represents the most promising tool to test MSI in those cancers not belonging to the spectrum of Lynch syndrome and in rare cancer types, for which little is known about MSI testing with IHC and/or MSI-PCR. Interestingly, one of most promising applications of NGS regards patient monitoring during immunotherapy. In fact, Cabel et al. have applied NGS to the study of circulating tumour DNA during anti-PD-1 therapy, demonstrating that it might represent a valuable tool to assess tumour response in patients treated with immune checkpoint inhibitors [104, 105].

In conclusion, we provide expert-consensus based recommendations for MSI definition and testing. Furthermore, studying the relationships among TMB, MSI and PD-1/PD-L1 expression, we highlight that their prevalence and role may differ based on tumour type and can be affected by several factors. Although MSI, TMB and PD-1/PD-L1 expression are recognised markers for the selection of patients for immunotherapy, there is the need to standardise PD-1/PD-L1 and define cut-offs for TMB in different tumour types. To this end, ESMO TRKPM groups have been established to clarify these points. Moreover, the response rate to immune checkpoint blockade may also be high for particular tumour types or patient settings that have low TMB and lack of MSI or PD-1/PD-L1 expression. This highlights that new potential predictors of response to immunotherapy are needed. As
previously pointed out, NGS may represent a decisive tool for applying current knowledge and concurrently provide new insights on this topic. Indeed, we need to develop new models of clinical trials, not only for evaluating drug efficacy but also to test the clinical utility of different NGS approaches, and how this may improve cancer patient outcome. Along this line, our recommendations may represent a robust starting point.

Acknowledgements

This is a project initiated by the ESMO Translational Research and Precision Medicine Working Group. We would also like to thank ESMO leadership for their support in this manuscript.

Funding

It is a project funded by the European Society for Medical Oncology (no grant number applies).

Disclosure

FB: Amgen, Merck, MSD, BMS, Sanofi; ML: Illumina, BMS, AstraZeneca (research support), Bayer, Roche (consultancy), Nimagen (royalties); RM: Roche, Tesaro (Speakers Bureau), Merck, Tesaro (Consultancy) Astra Zeneca, Tesaro (Travel subsidies); NR: Illumina (Speakers Bureau); Pfizer, BMS (research support); AS: Ypsen, Astra Zeneca (Speakers Bureau). All other authors have nothing to disclose.

References

87. Govindan R, Ding L, Griffith M et al. Genomic landscape of non-small cell
86. Ludmir EB, Stephens SJ, Palta M et al. Human papillomavirus tumor
85. Bernardi MP, Ngan SY, Michael M et al. Molecular biology of anal
84. Weinberg BA, Xiu J, Hwang JJ et al. Immuno-oncology biomarkers for
gastric and gastroesophageal junction adenocarcinoma: why PD-L1
testing may not be enough. Oncologist 2018.
83. Heald B, Marquard J, Funchain P. Strategies for clinical implementation
82. Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and
meta-analysis of microsatellite instability in ovarian cancer: a systematic review. This article is a US Government
work and, as such, is in the public domain of the United States of
81. Polom K, Marano I, Marrelli D et al. Meta-analysis of microsatellite in-
stability in relation to clinicopathological characteristics and overall
80. Pal T, Pernth-Wey J, Kumar A, Sellers TA. Systematic review and
meta-analysis of ovarian cancers: estimation of microsatellite-high fre-
quency and characterization of mismatch repair deficient tumor hist-
79. Gkekas I, Novotny J, Pecen L et al. Microsatellite instability as a prog-
nostic factor in stage II colon cancer patients, a meta-analysis of pub-
78. Murphy MA, Wentszen N. Frequency of mismatch repair deficiency
in ovarian cancer: a systematic review. This article is a US Government
work and, as such, is in the public domain of the United States of
77. Ashtorab H, Ahuja S, Kannan I et al. A meta-analysis of MSI frequency
76. Diaz-Padilla I, Romero N, Amir E et al. Mismatch repair status and clinical outcome in endometrial cancer: a systematic review and meta-
75. Weinberg BA, Xiu J, Hwang JJ et al. Immuno-oncology biomarkers for
gastric and gastroesophageal junction adenocarcinoma: why PD-L1
testing may not be enough. Oncologist 2018.
74. Vanderwalde A, Spetzler D, Xiao N et al. Microsatellite instability status
landscape and immune activity is associated with human papillomavi-
rus master regulators. Front Immunol 2017; 8: 689.