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DEEP BRAIN STIMULATION (DBS)

Since the late 1980s, DBS has substantially
expanded the therapeutic possibilities of
treating movement disorders such as Par-
kinson disease (7, 8). DBS refers to a com-
plex neuromodulative procedure in which
electrodes are stereotactically implanted
into defined target structures of the brain.
Despite many years of experience with DBS,
the therapeutic effects are not yet well un-
derstood. There are various mechanisms of
action being discussed, such as excitatory
and inhibitory actions on the next process-
ing stage (57, 58) or interactions with neu-
romodulators or receptors. The benefit of
DBS in the field of movement disorders has
repeatedly been documented, and the min-
imal invasiveness of the procedure and the
rare and usually minor side effects open the

� Alzheimer disease
� Deep brain stimulation
� Nerve growth factor
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implementation of DBS for other neurolog- t
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cal and psychiatric indications (41). Along
his line, the results of various studies have
ointed out promising effects of DBS for

he treatment of severe obsessive compul-
ive disorder, Tourette syndrome and ma-
or depression (35, 40, 48, 64, 68, 90). In
he last 2 years, two investigations have
ven been published in which DBS has
een used with the aim to improve cognitive
bilities in patients with dementia (27, 50).
urthermore, improved memory processing

n patients not affected by dementia has just
ecently been described (31, 82).

In this context a new target candidate is
he nucleus basalis Meynert (NBM; see
ttp://clinicaltrials.gov/ct2/show/NCT0109
145). Theodor Meynert’s neuroanatomic
tudies contributed to the development of

neurosurgical method originally app
the application of DBS has increas
option for several neuropsychiatric d
syndrome, obsessive compulsive dis
Latest research suggests beneficial
(AD). Because of the high prevalen
disease, we endeavored to discuss
AD.

� METHODS: Recent literature on the
ational data and human studies, has
ypothesis regarding the effects of e

acilitate our ongoing pilot study rega
NBM) in patients with AD.

RESULTS: It is hypothesized that D
probably improve or at least stabili
patients with AD by facilitating ne
synthesis of nerve growth factors.

� CONCLUSIONS: Considering the la
there is a great need for novel and e
provides insights into the theoretical
our hypothesis will be validated by o
opportunity in the treatment of AD.
he nineteenth-century “brain psychiatry” g

5-S27.e43, SEPTEMBER/OCTOBER 2013www.WOR
ovement. His speculation that certain
ognitive impairments resulted from an
mbalance in blood flow between cortical
nd subcortical structures parallels mod-
rn controversies concerning the role of
hese brain regions in the pathophysiol-
gy of dementia. Meynert described a
ubcortical nucleus in the basal fore-
rain, the nucleus basalis of Meynert (i.e.,
BM), which has been shown to provide

holinergic innervation to the cortex.
oss of cells within this structure may ac-
ount for the loss of cortical cholinergic
arkers in Alzheimer disease (AD), a so-

alled “cortical” dementia, and in the de-
entia of Parkinson disease. The article

y Whitehouse et al. revived the concept
f a pivotal role of the NBM for the patho-

in movement disorders. Over time,
been considered as a therapeutic

ders, including Gilles de la Tourette
r, major depression and addiction.
cts of DBS in Alzheimer dementia
nd the considerable burden of the

reveal the challenges of DBS in

thophysiology of AD, including trans-
n studied to generate a fundamental
ical stimulation on cognition and to
DBS of the nucleus basalis Meynert

n the nucleus basalis Meynert could
emory and cognitive functioning in
oscillations and by enhancing the

umber of patients suffering from AD,
ive treatment methods. Our research
ground of DBS in AD. Providing that
ngoing pilot study, DBS could be an
� OBJECTIVE: Deep brain stimulation (DBS) is a therapeutically effective
lied

ingly
isor
orde
effe

ce a
and

pa
bee

lectr
rding

BS i
ze m
ural

rge n
ffect
back
ur o
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enesis of AD (96).
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KATJA HARDENACKE ET AL. DBS OF THE NUCLEUS BASALIS MEYNERT IN ALZHEIMER DEMENTIA
An influential electrophysiological study
(16) forwarded the concept that increased
neuronal firing of the NBM provides a
steady background of neocortical activity
that may enhance the effects of other affer-
ents to the neocortex (78). Thereby, the
more general action of the NBM on the cor-
tex was regarded as an analogue to the clas-
sical concept of Moruzzi and Magoun, who
envisaged the reticular ascending fiber sys-
tem as an arousal system (65). Since then,

mple experimental evidence has been ac-
umulated supporting the role of the NBM
or cortical tuning and the consequences of
he breakdown of this action by degenera-
ion of this nucleus in the earliest stages of
ementia.

Specific modifications of NBM stimula-
ion on cortical processing have also been
emonstrated. Episodic electrical stimula-

ion of the nucleus basalis, paired with an
uditory stimulus, accomplished massive
nd progressive reorganization of the pri-
ary auditory cortex in the adult rat that

lso outlasted stimulation for hours and
uggested that the basal forebrain plays an
ctive instructional role in representational
lasticity (45).

The wealth of experimental data provides
he background for clinical applications
hat try to modify NBM function by either

olecular or electrical neuromodulative
ethods. The objective of this article is a

tate-of-art discussion of the current ratio-
al for this type of approach. Neuromodu-

ation of the basal forebrain structures
ould open a new avenue for compensating
or subcortical dysfunctions that character-
ze degenerative diseases by modifying
ortical functions, and may even provide
ome insight into the pathophysiology and
athogenesis of AD.

LZHEIMER DEMENTIA

D is characterized by a chronic progres-
ive cognitive deterioration, frequently ac-
ompanied by psychopathological symp-
oms, reduced functional ability, changes in
ersonality, social isolation and loss in
uality of life. With a proportion of
0%�80%, AD is the most prevalent form
f dementia and, because of its limited

reatment options, a severely disabling dis-
rder not only for the patient concerned but
lso for the relatives providing care (26, 79).
Besides a polygenetic predisposition, t

S27.e36 www.SCIENCEDIRECT.com
ultifactorial causes contribute to the de-
elopment of AD. Despite great efforts, so
ar no scientific consensus of a convergent
oncept about the neurobiological pro-
esses in AD has been achieved. The most
requently cited idea is the “amyloid cas-
ade hypothesis,” which states that the ex-
racellular formation and aggregation of

�-amyloid peptides, so-called cerebral am-
loid plaques, and the synthesis of intracel-
ular neurofibrillary bundles of hyperphos-
horilated tau proteins are the initial steps

n the development of AD and eventually
esult in the elective inexorable atrophy of
eurons (20, 44, 71). Based on the amyloid
ascade hypothesis, some modern thera-
eutic approaches focus on preventing or
eversing the formation of amyloid, includ-
ng active and passive immunization
gainst �-amyloid (51, 83). Unfortunately,
p to now this treatment approach could
ot achieve sustained success.

The lack of an effective treatment is all
he more disappointing as a major progress
as been made regarding diagnostic proce-
ures over the past years. Detecting and di-
gnosing the disease earlier is now possible
y the detection of amyloid deposition

hrough positron emission tomography
PET), cerebrospinal fluid markers, and the
linical concepts of mild cognitive impair-
ent (MCI) and pre-MCI (19, 24, 81, 94).
Until now, the treatment of choice is still

ased on the administration of antidemen-
ive medication such as memantine, done-
ezil, galantamine or rivastigmine (95). Al-

hough their positive effect on cognitive
bilities in patients with AD is unques-
ioned, effect sizes (d) are rather small and
ary between 0.1 and 0.4 (6, 23, 62). With
he exception of memantine (an NMDA glu-
amate receptor antagonist), all substances

odify the inhibition of cholinesterase.
The approach to treat AD by enhancing

holinergic functioning originated in the
holinergic hypothesis by Bartus et al. (6),
ho states that the development of AD is a

esponse to a reduced synthesis of acetyl-
holine (ACh) caused by the progressive
euronal degeneration.

ACh is essential for cognitive functioning
nd memory processing. The release of
Ch is voltage-dependent and mediated

hrough the initiation of action potentials.
he disposal of ACh is carried out in parcels
f 10,000 molecules. The postsynaptic exci-
ation through ACh triggers a complex in- b

WORLD NEUROSURGERY, http://d
racellular signaling cascade (25), which is
ased on a subtle interplay between musca-
inic and nicotinic postsynaptic receptor ac-
ivation (23, 33, 62). It could be demon-
trated that an elevation of ACh levels in
ealthy adults as well as in demented pa-

ients enhances memory capacity and im-
roves performance on several cognitive

asks including verbal and object learning
38, 62, 63).

In more detail, Kukolja et al. (49) could
how that nicotinergic stimulation with
hysostigmine facilitates encoding of spa-

ial contextual information and is associ-
ted with increased neural activity in the
ight hippocampal formation. In addition,
t could be demonstrated that participants

ho were worse at the baseline examination
enefited more from cholinergic stimula-

ion than participants with better baseline
cores on a test assessing cognitive func-
ioning. Bearing this in mind, it can be as-
umed that reduced ACh levels impair cog-
itive functioning not only in patients with
ementia but even in healthy subjects. The
itnessed correlation of cognitive function-

ng and the level of ACh has also been em-
hasized by other investigations: If the cho-

inergic transmission is blocked in humans
nd monkeys, cognitive abilities are re-
uced in a similar way as they are in patients
ith mild and moderate AD (5, 10). Further-
ore, it appears that the severity of the

ymptoms in dementia is dependent on the
evel of cholinergic loss and that vice versa
he treatment with antidementive medica-
ion and cholinergic modulators improves
he symptoms of AD (10, 12, 15). The prin-
iple sources of ACh are the cholinergic
eurons in the basal forebrain, wherefrom
holinergic fibers project to all layers of the
eocortical mantle and to the hippocampus
nd amygdala (18). Apart from this, there
re cholinergic interneurons in the stria-
um.

HE BASAL FOREBRAIN AREA AND THE
BM

he basal forebrain area (BFA) has a complex
rchitecture (60). It comprises the basal fore-
rain cholinergic neurons (BFCN) within the
edial septal nucleus, the diagonal band

ucleus and the nucleus basalis of Meynert
NBM) (Figure 1). The NBM, also termed
H4 group, has the largest volume. It could

e demonstrated that approximately 90% of

x.doi.org/10.1016/j.wneu.2012.12.005
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KATJA HARDENACKE ET AL. DBS OF THE NUCLEUS BASALIS MEYNERT IN ALZHEIMER DEMENTIA
the NBM neurons release the neurotrans-
mitter ACh (59, 60, 69, 73). These neurons

redominantly project diffusely to the neo-
ortical mantle, where the primary physio-
ogical effect of ACh is to modulate the re-
ponse of pyramidal cells to other—
articularly glutamatergic— cortical input
11, 55). This innervation of the neocortex
y BFCN is an integral part of cortical acti-
ation as it supports cognitive functions,
uch as alertness, memory, attention and
earning. In simplified terms, the function
f the BFCN is sometimes described as a
ind of “background tuning” (27, 75, 76).
he exceeding importance of the NBM for a
resynaptic tuning of the entire neocortex
as been subject to many animal studies

92, 93). In an investigation of McGaughy et
l. (56), the relationship between selective

Figure 1. Histological and graphic presentation of
Meynert. (Used with permission from Mai J, Vo
amage to the NBM, cortical ACh levels and a

WORLD NEUROSURGERY 80 [3/4]: S27.e3
ttentional functioning was examined in
ats. The immunotoxin 192 IgG-saporin
as infused to the NBM, causing lesions in

his region. Rats with extensive damage in
he NBM showed an elevated impairment in

serial reaction time task (i.e., the five-
hoice serial reaction time task) used to as-
ess visual attention. These behavioral def-
cits were associated with a severe
mpairment in central executive functions.
he outcome in the attention task correlated
ignificantly with the number of choline
cetyltransferase�immunoreactive cells.
ats with more extensive lesions in the NBM
ad significantly lower levels of cortical ACh
elease. In humans pharmalogical manipula-
ions of cholinergic receptors also are known
o affect attentional performance (9).

Much about memory encoding and syn-

ucleus basalis
axinos G: Atlas of

the Human Brain. 3
ptic plasticity is not yet completely under- r

5-S27.e43, SEPTEMBER/OCTOBER 2013www.WOR
tood, for example, the “plasticity-stability”
ilemma (1). However, the importance of

he cholinergic BFA system as well as the
lutamatergic system, which communi-
ates via NMDA receptors and plays a deci-
ive role in long-term potentiation, has
een more clearly formulated already. The
FA appears to promote cortical plasticity
y allocating the cortex to operate specifi-
ally on behaviourally arousing stimuli. It is
ssumed that higher ACh levels contribute
o an enhancement of hippocampal theta
scillations, which are associated with im-
roved memory encoding (33, 89). In this
ontext, lesion studies demonstrated that
he activity of the NBM serves as a reinforce-

ent signal in order to stimulate cortical
lasticity (46, 59, 61, 97).

Furthermore, the basal forebrain neu-

San Diego: Elsevier Academic Press; 2008.)
the n rd ed.
ons appear to modulate the cerebral regu-
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KATJA HARDENACKE ET AL. DBS OF THE NUCLEUS BASALIS MEYNERT IN ALZHEIMER DEMENTIA
lation of blood supply in the neocortex and
thereby glucose metabolism. This process
is regarded as an elementary prerequisite
for cognitive functioning. Their terminal
axons form not only synapses with cortical
pyramidal cells but are also distributed
along small cortical blood vessels, where
they work to increase cortical blood flow by
activating ACh receptors of both the nico-
tinic and the muscarinic type (88). In sum-
mary, a large body of evidence points out to
a specific vulnerability of the basal fore-
brain cholinergic system in the pathology of
AD (85).

Basal Forebrain Degeneration in AD
Structural magnetic resonance imaging has
shown that brain regions including the
NBM degenerate in patients with AD and in
the process of the cellular loss, the cell nu-
cleus withers completely (77). The apparent
neuronal loss is assumed to be the substan-
tial factor responsible for the subsequent
decrease of ACh in the cortical projection
area (34). By using a deformation-based ap-
proach and a recently developed probabilis-
tic map of different basal forebrain magno-
cellular compartments in the Montreal
Neurological Institute space (99) Grothe et

l. (30) found a significant atrophy in the
NBM (especially in the cell groups of the
Ch4) in patients with MCI, who represent a
high-risk population to develop AD. The
volumes of the degenerated cholinergic re-
gions correlated highly negative with the pa-
tients’ cognitive capacity but positive with a
statistically significant loss of gray matter vol-
umes in the affected compartments. This cor-
relation was also observed in patients with an
established dementia (42).

In an animal model, Boncristiano et al.
(14) investigated the impact of cholinergic
basal forebrain degeneration on cortical
amyloid deposition. Eight months after a
unilateral lesion of the NBM, the transge-
netic amyloid precursor protein (APP23)
mice showed a 38% reduction in choline
acetyltransferase activity as well as a signif-
icant fiber loss of 30% decrease in the ipsi-
lateral frontal cortex. The significant fiber
loss in the animals correlated with the cor-
tical A� levels, indicating that the cortical
cholinergic deficit in the APP23 mice is
probably induced by A� accretion. The ob-
erved dystrophic cholinergic fibers sur-
ounding the amyloid deposition were

ound to resemble the neuropathological

S27.e38 www.SCIENCEDIRECT.com
hanges observed in brains of patients with
D whereas the ratio of A40 to A42 re-
ained stable.
On the basis of these findings, the au-

hors concluded that the cholinergic deficit
n AD is, on the one hand, caused by a loss
f cholinergic forebrain neurons and, on

he other hand, by an abnormal local depo-
ition of amyloid protein (amyloidosis) in
he neocortex and hippocampus. The amy-
oid plaques and the cerebrovascular amy-
oid are found throughout the entire neo-
ortex and hippocampus, whereas only a
odest amyloid deposition is observed in

he basal forebrain, including the NBM
14). It has previously been observed that
ven small quantities of A� can induce a
ong-term down-regulation of the cholin-
rgic activity in cholinergic SN56 cells (70).
ccordingly, it has been hypothesized that

he concentration of A� in the mice’s brain
is probably sufficient to induce cholinergic
hypoactivity as well as neural shrinkage.
Unfortunately, it remains unclear why these
regions are predominantly affected.

Given the apparent connection between
AD-related NBM degeneration and dimin-
ished cholinergic transmission as well as
cognitive functioning, supporting, protect-
ing and restoring the basal forebrain cho-
linergic neurons seems essential. One op-
tion to pursue this therapeutic objective
would be the use of nerve growth factors
(NGF), proteins essential for the neurite
outgrowth, synapse formation and survival
of cholinergic neurons. Levels of NGF are
vulnerable to aging and are pathologically
low in patients with AD, especially in the
basal forebrain cholinergic neurons
(BFCNs) of the NBM (22), which is also
reflected by the correlation between de-
creased NGF level, the severity of AD, and
basal forebrain degeneration (53, 74). In
reverse, it can be assumed that the treat-
ment with NGF can provide a long-lasting
cholinergic trophic support and, as a conse-
quence, is able to reduce or even prevent
cognitive deterioration in patients with AD.
Unfortunately, the treatment with NGF re-
mains an important challenge because the
delivery of NGF to the brain causes unde-
sired adverse nociceptive side effects (17).
Furthermore, NGF does not penetrate the
blood�brain barrier and its therapeutic use
therefore depends on invasive approaches
requiring neurosurgery (28).
Bishop et al. (13) demonstrated that by

WORLD NEUROSURGERY, http://d
injecting CERE 110, a gene therapy product
to deliver NGF into the rats’ NBM, stable
and sustained NGF levels could be
achieved, lasting up to 12 months. The at-
tempt to manipulate the NGF release had
both a neuroprotective and a neurorestor-
ative effect (13). Other animal models could
likewise demonstrate that the treatment
with NGF can reduce the shrinkage of BF-
CNs, which was induced before through le-
sions to the fornix (47, 72, 87). Furthermore,
research indicates that the administration of
NGF to the NBM area prevents the shrinkage
of the human BFCNs after brain injury (43,
84), facilitates the reversal of age-related brain
atrophy (66) and even induces the recovery of
cognitive functions such as learning and
memory (21, 52).

DOES DBS INDUCE NEUROPROTECTIVE
EFFECTS?

In the context of AD-associated dysregula-
tions in NGF levels, it seems to be of partic-
ular interest to examine whether the appli-
cation of DBS might lead to an increased
NGF release.

Indeed, the idea of an increased NGF re-
lease through electrical stimulation appears
plausible considering recent findings of in
vitro research. Electrical stimulation was
applied to cultured Schwann cells and effec-
tively enhanced NGF release. Stimulation
parameters of 1 Hz achieved the greatest
NGF release. Greater frequencies (50 or 100
Hz) resulted in lower amplitudes of NGF
release (39). On the contrary, other studies
demonstrated a greater BDNF release at
greater (100 Hz or more) than at lower fre-
quencies (5, 10, or 25 Hz) in hippocampal
neurons (2, 3). It can be assumed that the
observed differences regarding the stimula-
tion frequencies are due to the different sen-
sitivity of the different cell types.

Animal studies replicated similar effects
in the NBM. In a recent investigation the
effects of electrical stimulation on NGF lev-
els in the cerebral cortex were investigated
in 36 rats by the use of high sensitivity en-
zyme-linked immunosorbent assay, a pro-
cedure to detect minimally expressed anti-
gens. Unilateral NBM stimulation (for an
overview, see Hotta et al. [36]) resulted in
an increase of ipsilateral extracellular NGF
levels. Interestingly, the NGF secretion was
completely abrogated by a nicotinic ACh re-

ceptor antagonist, implicating that the cho-

x.doi.org/10.1016/j.wneu.2012.12.005
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KATJA HARDENACKE ET AL. DBS OF THE NUCLEUS BASALIS MEYNERT IN ALZHEIMER DEMENTIA
linergic basal forebrain projections to the
cortex seem to be responsible for the NGF
increase. However, the investigations have
been performed in adult rats and not in a
valid animal model mimicking AD (37).

Nevertheless, the stimulation-related in-
crease of NGF release is a highly relevant
aspect that we hope to induce by applying
DBS in AD patients. Previous research could
show that DBS apparently has a protective
effect, probably by inducing the synthesis of
NGF. Hamani et al. (32) administered cor-
ticosterone, a steroid hormone of the corti-
costeroid type, to rats to diminish neuro-
genesis and as a consequence induce
memory deficits. Treating the animals with
anterior thalamic nucleus high-frequency
stimulation resulted in improved perfor-
mance on a delayed-nonmatching-to-sam-
ple-task. The positive effect of anterior tha-
lamic nucleus high-frequency stimulation
in corticosterone treated rats on memory
functioning was only observed when the de-
lay between stimulation and behavioral
testing was 33 days. When the stimulation
was administered only 4 days before the be-
havioural testing, no significant changes
could be found. These results indicate that
an increase in hippocampal neurogenesis
may be responsible for the enhanced mem-
ory performance. Therefore, it can be hy-
pothesised that plasticity changes possibly
occur through the development of new den-
tate gyrus cells and are responsible for this
effect (32).

In a phase 1 study, Laxton et al. (50)
treated six patients with early AD with DBS
in the fornix, a major fiber pathway con-
necting the hippocampus with the mam-
millary bodies and the septal nuclei. Neuro-
psychological tests, administered to the
patients 1, 6, and 12 months postsurgery,
showed that the rate of cognitive decline
decreased. Furthermore, the neural activity
measured by means of fludeoxyglucose-
positron emission tomography in memory
circuits, including the entorhinal and the
hippocampal area, was enhanced after
the application of DBS. The stabilization of
the cognitive performance correlated sig-
nificantly with sustained changes in the im-
paired glucose metabolism in temporal and
parietal lobes, even at the 1-year follow-up
assessment (80).

Although the exact mechanisms of DBS
are still unknown, the authors hypothe-

sized that stimulation of the fornix leads to t

WORLD NEUROSURGERY 80 [3/4]: S27.e3
n enhanced neurogenesis and the release
f neurotrophic factors in the hippocampus
50). This notion might be supported by the
bservation that patients with better cogni-

ive functioning were more likely to benefit
rom the treatment, whereas more affected
atients were more likely to cognitively de-
line after initiation of DBS. A possible ex-
lanation of these findings could be that
atients with better cognitive baseline func-

ioning benefit more from the neuroprotec-
ive effects of DBS because their brain tissue
as not yet been subject to such a dramatic
euronal loss as it is characteristic for the

ate stage of AD.
At our research site, a patient suffering

rom proceeded Parkinson dementia with
dvanced symptoms regarding working
emory, concentration and attention defi-

its as well as apraxia, was treated with DBS
f the NBM. After surgery, the patient dem-
nstrated slight but sustained improve-
ent in various aspects of cognitive func-

ioning, such as attention, concentration,
lertness, drive, and spontaneity, as well as
praxia and ataxia (4). In addition, memory
unctions improved, although they re-

ained deficient compared with healthy
ontrols. It is remarkable that the reported
ositive effects were observable at frequen-
ies less than 20-Hz stimulation but not un-
er high-frequency stimulation of 130 Hz,
hich is commonly used in movement dis-
rders. This observation supports the as-
umption of low-frequency stimulation
aving an excitatory, and high-frequency
timulation having a rather inhibitory, ef-
ect (e.g., [67, 98]). The achieved stabiliza-
ion of cognitive functioning could be

aintained about more than 2 years (un-
ublished data). We assume that these pos-

tive effects were decisively induced by the
elease of NGF in the NBM as a conse-
uence of the stimulation.

Because the neuropathology of both PD
ementia and AD involve similar features
nd because the clinical picture of both is
haracterized by deficits in working mem-
ry, attention and concentration, a partial
eneralization of these findings to AD, at

east, appears appropriate. Based on this
dea, these pilot results formed the basis for
ur ongoing study on DBS of the NBM to

reat cognitive deficits in light-to-moderate
D (http://clinicaltrials.gov/ct2/show/NCT
1094145). Concerning its methodology,

he study has been designed to include six r
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atients with AD, whose progress on the
lzheimer disease assessment scale (i.e.,
DAS-cog), our primary outcome measure,

s to be observed for up to 1 year after stim-
lation onset including a double-blinded
ham control period.

CUTE EFFECTS ON COGNITION BY DBS

n addition to the aforementioned potential
echanisms regarding the stimulation-in-

uced enhanced NGF release, yet another
timulation effect might be conceivable in
he context of dementia, namely a positive
mpact on neuronal oscillations. As we cur-
ently understand, neuronal oscillations are
ssential for the processing of information
nd for enabling communication between
ifferent brain structures. As can be shown
y the example of Morbus Parkinson, DBS

s nonetheless able to modify pathological
atterns of oscillations (29, 86). In this con-

ext, it is possible that DBS is able to reset
estabilised patterns of neuronal oscilla-

ions in AD. Particularly the hippocampal
heta rhythm is assumed to play an impor-
ant role in the context of learning and

emory (50).
The potential relation between DBS, os-

illatory patterns and memory could re-
ently be demonstrated in patients with
harmaco-resistant epilepsy, who were

reated with DBS. In seven patients, DBS
as applied to targets in the hippocampus

nd the entorhinal area while they per-
ormed a spatial memory task. The results
emonstrated that spatial learning perfor-
ance was enhanced by electrical stimula-

ion of the entorhinal region.
Furthermore, the entorhinal stimulation

50 Hz) led to a theta phase resetting mea-
ured through hippocampal depths elec-
rodes. Previous research findings already
uggested that theta phase resetting im-
roves memory functioning in an animal
odel because it supports the mechanisms

nderlying selective attention and as a con-
equence enables the best possible encod-
ng of incoming information (82). Further-

ore, it could likewise be demonstrated
hat electrical stimulation of the perforant
athway in rodents triggers a theta phase
esetting, thereby creating favourable con-
itions for long term potentiation (54).
hese results confirm the hypothesis that
esetting theta activity facilitates the poten-
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tiation and encoding of relevant incoming
stimuli.

Hamani et al. (31) published a case report
of an obese patient, who was treated by DBS
in the fornix. The morbid obesity remained
stable, whereas the stimulation unexpect-
edly evoked detailed autobiographical
memories (pilot patient to the before men-
tioned phase 1 study), suggesting that DBS
of the fornix modulates limbic activity and
enhances memory functions. Through the
examination of the stimulated brain re-
gions, it could be demonstrated that DBS
significantly enhanced the activity in the
hippocampal and parahippocamal regions.
These results likewise indicate that DBS
might have induced a modulation of oscil-
latory activity.

Although the influence of DBS on oscilla-
tory activity is not yet proven, the acute ef-
fects observed in one of our patients sug-
gest a similar working mechanism. As
mentioned previously, we observed an en-
hancement of memory functions in the Par-
kinson patient, who received DBS in the
NBM. In addition to the insightful observa-
tion of beneficial long-term effects, we also
could assess acute effects. After the inter-
mittent OFF condition (24 hours without
stimulation), a major cognitive deteriora-
tion was observed.

Given these immediate stimulation ef-
fects, it must be assumed that DBS also im-
pacts upon neural oscillations, considering
that a time interval of 24 hours is too short
to solely let a stimulation-induced neuro-
genesis account for the witnessed differ-
ence between the ON and the OFF condi-
tion.

Both forms of dementia—Parkinson and
Alzheimer—posses a similar neuropathol-
ogy, particularly as the NBM is to a large
extent degenerated in both diseases (27).
We therefore aspire to attain similar posi-
tive cognitive effects after DBS of the NBM
in patients with Alzheimer’s disease.

CONCLUSION

The impressive results regarding the appli-
cation of DBS in neurological and psychiat-
ric diseases during the past years are very
promising and the consideration of new
therapeutic opportunities to treat other dis-
eases, which are, until now only insuffi-
ciently treatable.
Despite the substantial therapeutic prog- f
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ess that has been made during the last few
ecades, AD remains a progressive and
arely controllable disease. Although, the
xact mechanisms of action underlying
BS are still not completely understood,

here is first evidence that DBS in neurode-
enerative diseases could unfold neuropro-

ective mechanisms, e.g., through the in-
uction of NGF-synthesis. Given that the
BM plays an important role regarding the
europrotective mechanisms and cognitive
rocesses described previously, the nucleus

s considered a promising target structure.
owever, it has to be taken into account

hat accessing the NBM stereotactically is
ighly demanding since it is a very flat and
lmost horizontal cell structure, which re-
uires a deep frontotemporal approach. At

he same time the CH4 area of the NBM can
e localized well through MRT.

In addition to its long-term effects, DBS
ppears to induce acute effects as well, pos-
ibly by modulating oscillatory rhythms
rucial for memory processing. However,
urther research is necessary to gain more
nformation about the underlying mecha-
isms of DBS and to possibly contribute to

he elucidation of how to decelerate the
rogress of AD. Despite the enthusiasm for
BS as a treatment for AD, it is nonetheless

mportant to consider the possible side ef-
ects carefully, these being first and fore-

ost perioperative complications, which
re, based on the experience with other neu-
odegenerative diseases, for example, Par-
inson dementia, rather predictable (91).
oreover, the first study on DBS in AD pub-

ished thus far did not indicate another risk
ssessment concerning this matter (50).

Completely unknown, however, are the
ide effects possibly induced by stimulation
f the new target structures, for example,

he fornix and NBM. Experience with these
eural targets should be documented care-

ully during the next years since it will de-
ide about further investigations of the pos-
ible benefit of DBS in AD. Taking into
onsideration the benefit-risk profile, it re-
ains to be seen whether DBS is an effective

reatment option for patients with AD.
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