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Abstract This paper presents a method for identifying a

patient’s wake/sleep state for closed-loop deep brain

stimulation (DBS). The method uses a real-time wake/sleep

identification algorithm that includes posture analysis

based on the movement of the chest below the clavicle,

which is the location of the subcutaneous pulse generator.

A single micro-accelerometer was used to monitor the

movement of the wrist and the chest of thirteen healthy

adults and twelve patients with Parkinson’s disease for nine

continuous hours. The wake/sleep state identification for

the chest algorithm had accuracy, sensitivity, and speci-

ficity values of 85.78, 84.21, and 82.08 %, respectively,

compared to video recordings for patients with DBS ON,

and 82.74, 82.68, and 82.28 %, respectively, for patients

with DBS OFF. The algorithm performance for the chest is

comparable to that of the commonly used location on the

wrist. The real-time wake/sleep identification algorithms

were proved to be effective. This research provides a

practical method for closed-loop DBS, which will greatly

benefit patients with Parkinson’s disease.

Keywords Parkinson’s disease � Deep brain stimulation

(DBS) � Wake/sleep identification � Body movement �
Accelerometer

1 Introduction

Deep brain stimulation (DBS) is a key therapy used to treat

Parkinson’s disease (PD). A deep brain stimulator consists

of an implantable pulse generator, one or two stimulating

leads, and one or more extensions. However, there are two

major disadvantages to this open-loop stimulation design.

One is the side effects of the continuous high-frequency

electrical pulses on neural nuclei [1, 2]. The other is the

limited battery life of the pulse generator. Each implanted

battery has an expected lifetime of about 5 years [3], with

battery replacement surgery needed when the battery is

exhausted. Thus, patients with PD would greatly benefit

from a closed-loop device that could automatically adapt

the stimulation according to the patient’s condition rather

than over-stimulating the brain.

Brain waves are a direct, reliable indicator of patient

symptoms. However, the collection and subsequent anal-

ysis of electroencephalogram (EEG) signals require a large

amount of medical equipment, which makes it difficult to

integrate with current deep brain stimulators, since an

implantable device must be very small. The inability to

measure brain waves impedes the development of closed-

loop DBS.

Clinical observations have suggested another way to

implement closed-loop DBS. Tremor, one of the major

symptoms for patients with PD, disappears during sleep

[4], so patients do not need as much stimulation in the sleep

state as in the wake state. Therefore, DBS can be modified

depending on the wake/sleep state of the patient.

A literature survey revealed that body movements pro-

vide simple, reliable feedback information that can be used

to identify an individual’s wake/sleep state. Noncontact

methods to measure body movement include those that use

pneumatic cushions [5], piezoelectric films [6], and video
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cameras [7]. However, an additional communication

module is needed to transmit the identified wake/sleep state

for such noncontact methods, which would constrain the

patient’s daily life. Actigraphy, which collects acceleration

data from the wrist, gives better non-real-time wake/sleep

analysis results than does polysomnography (PSG) [8, 9].

The first actigraphic algorithm for wake/sleep analysis was

proposed by Webster et al. [10], who established a foun-

dation for later wake/sleep identification algorithms.

Actigraphy research has continued for 30 years [11–14]. A

study by Sadeh et al. [15] had overall agreement rates with

PSG of 91–93 %. However, no feasible applications of

closed-loop deep brain stimulators have been reported. The

development of a real-time algorithm for wake/sleep

identification and the validation of the algorithm on PD

patients will greatly promote the design of closed-loop

DBS.

This study describes an effective method for identifying

a patient’s wake/sleep state in real time for closed-loop

DBS. The real-time wake/sleep identification algorithm

uses posture analysis based on the movement of the chest

below the clavicle, where the pulse generator is implanted

subcutaneously. A single micro-accelerometer was used to

sense movements of the wrist and the chest of nine healthy

young adults, four healthy old people, and twelve patients

with PD for nine continuous hours. The performance of the

chest algorithm was comparable to that of the commonly

used location on the wrist. Both the miniature accelerom-

eter and the effective real-time wake/sleep identification

algorithm can be used in closed-loop DBS.

2 Materials and Methods

2.1 Body Movement Measurements

Body movements of 13 healthy subjects and 12 patients

with PD were measured. The thirteen healthy subjects were

from Tsinghua University, and none of them experienced

insomnia, hypersomnia, or other sleep disorders. All

experimental procedures on the healthy subjects were

approved by the University Committee on Research Prac-

tice at Tsinghua University. The twelve patients with PD

were enrolled from Beijing Tiantan Hospital and Peking

Union Medical College Hospital. Six of the patients had

just had DBS implantation surgery with the implantable

pulse generator in the OFF mode (DBS OFF), while the

other six patients had implantable pulse generators that

were turned on (DBS ON). All the PD patients suffered

from one or more motor symptoms, including rigidity and

tremors. The information of the subjects is shown in

Table 1. All the healthy subjects and patients were

informed about the entire experiment and were free to quit

at any time. They all signed an informed consent form. The

tests conducted on the patients with PD were approved by

the Beijing Tiantan Hospital Medical Ethics Committee

and the Peking Union Medical College Hospital Medical

Ethics Committee.

The data collection procedure for each subject lasted 9 h

at night, including the time before going to bed, in bed, and

getting up the next morning. During the 9 h, the subjects

were required to attach a detection device to the skin of the

non-dominant wrist and the chest below the clavicle. Each

subject was also monitored using an infrared camera during

the 9 h. The wake/sleep state of each subject for each time

period was obtained from the video recordings. Each sub-

ject or the accompanying family members were asked to

recall the wake/sleep states the following morning. They

were also asked to do a self-rating of sleep. With these

methods, a relatively real standard wake/sleep state was

obtained as the criterion to evaluate the algorithm

performance.

The effectiveness of video recordings as the criterion for

the wake/sleep state has been previously demonstrated.

Several studies have used video recordings to record sub-

jects’ behavioral states to obtain a standard for the wake/

sleep state [16, 17]. Scatena et al. [18] reported that video

recordings can be used as the criterion for wake/sleep

analyses and this could be particularly useful in clinical and

experimental settings in which traditional PSD could not be

performed. Video is superior to PSG, which typically

requires a fixed experimental environment and strict con-

straints on the subject. Thus, video recording is the first

choice when conducting experiments on infants, patients,

or animals.

The detection device used in the experiment included

the sensor module, data storage module, microcontroller,

and battery, with a total size of 45 mm 9 11 mm 9

17 mm. The acceleration data for the body movement was

sampled using a single three-axis micro-accelerometer

(MMA845X, Freescale Semiconductor, USA) at a sam-

pling rate of 10 Hz, with a range of ±2 g. The 9 h of

acceleration data were stored on a removable storage card.

The detection device was attached to the surface of the

subject’s skin using a medical adhesive. Figure 1 displays

the 9-h three-axis acceleration data obtained from the chest

below the clavicle of one subject.

2.2 Wake/Sleep Identification Algorithms for Chest

and Wrist

During the development of the algorithm for the chest

location below the clavicle and the wrist, two of the nine

healthy subjects were used as the training group with the

other seven healthy subjects and the twelve PD patients

used as the validation group.
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Three indices were selected to evaluate the performance

of the wake/sleep identification algorithm, namely accu-

racy, sensitivity, and specificity. Accuracy was the com-

prehensive index used to evaluate the algorithm. Sensitivity

represents an algorithm’s ability to identify the wake state,

which is essential to closed-loop DBS. Specificity is less

significant than sensitivity and can thus be sacrificed to get

a higher sensitivity in closed-loop DBS.

Accuracy ¼ TPþ TN

TPþ TN þ FN þ FP
ð1aÞ

Sensitivity ¼ TP

TPþ FN
ð1bÞ

Specificity ¼ TN

TN þ FP
ð1cÞ

True positive (TP) is the wake state is correctly identi-

fied as the wake state. False positive (FP) is the sleep state

is incorrectly identified as the wake state. True negative

(TN) is the sleep state is correctly identified as the sleep

state. False negative (FN) is the wake state is incorrectly

identified as the sleep state.

Unlike all previous wake/sleep identification algorithms,

the algorithms for the chest and the wrist were processed in

real time. The algorithms for the two locations were sim-

ilar, with the main difference being the analyses of the

body movement characteristics for the chest, which

included a posture analysis algorithm. The algorithm flow

chart for the chest is shown in Fig. 2.

2.2.1 Step 1: Calculation of Activity Intensity

The activity intensity during each period has been defined

in different ways, such as zero crossing mode (ZCM),

proportional integral mode (PIM), and time above thresh-

old (TAT). Different definitions are used in different

algorithms for different situations. The wrist algorithm uses

ZCM to calculate the activity intensity because it is very

simple and best reflects the intense movements of the wrist.

The activity intensity for each period for the wrist is

defined as the number of times the acceleration crossed

zero during each period (30 s). The waveform of activity

intensity in Fig. 3a was calculated according to the raw

acceleration data for the wrist algorithm. Figure 3a was

also used in our previous publication [19], which did not

present the details of the detection algorithm. The chest

algorithm uses PIM to calculate the activity intensity. The

activity intensity of each period, A, for the chest was cal-

culated as:

A ¼ 1

T

�ZT

0

jxðtÞj dtþ
ZT

0

jyðtÞj dtþ
ZT

0

jzðtÞj dt
�

ð2Þ

where x(t), y(t), and z(t) represent the three axis accelera-

tions, respectively, and T is the time span of each period.

The waveform of the activity intensity in Fig. 3b is cal-

culated for the chest algorithm.

Table 1 Subject information
Type of subjects No. of subjects Age (years) Weight (kg)

Training group Healthy young adults 2 25.0 ± 1.0 63.8 ± 6.3

Validation group Healthy young adults 7 24.7 ± 1.6 56.1 ± 7.6

Healthy old people 4 61.5 ± 0.5 64.0 ± 9.5

PD patients (DBS ON) 6 64.8 ± 2.2 59.1 ± 5.5

PD patients (DBS OFF) 6 64.2 ± 1.8 58.1 ± 4.8
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Fig. 1 Raw acceleration data from chest for one subject

Step 1: Calculation of activity intensity 

Step 2: Model

Step 3: Preliminary identification
of wake/sleep state

Step 4: Elimination of accidental factors Step 5: Posture analysis

Step 6: Final identification of wake/sleep state

Fig. 2 Algorithm flow chart for chest measurement

Wake/Sleep Identification Based on Body Movement for Parkinson’s Disease Patients 519

123



2.2.2 Step 2: Model

The relationship between the activity intensity and the wake/

sleep state is defined using a logistic regression model, which

typically deals with the relationship between consecutive

independent variables (X) and a two-value dependent (Y)

variable. The wake/sleep state (Y) is defined as:

Y ¼ 1 wake state

0 sleep state

�
ð3Þ

For the logistic regression model, the relationship

between the probabilities of Y and X is:

pðXÞ ¼ PðY ¼ 1jXÞ ð4Þ
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Fig. 3 Raw acceleration data, activity intensity, and identified states during 1 h for a wrist algorithm and b chest algorithm
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In general, there are no abrupt body movements, so the

wake/sleep state can be related to the combinations of the

activity intensity for several previous periods. The model

describing the relationship between the activity intensity

and wake/sleep state is:

pðAÞ ¼ x�nA�n þ � � � þ x�2A�2 þ x�1A�1 þ x0A0 ð5Þ

where A�i is the activity intensity of each period, where

‘‘-’’ indicates the previous periods, x�i is the scale of

activity intensity, A�i, n is the number of previous periods

taken into consideration.

The parameters in Eq. (5) were determined using max-

imum likelihood estimation. The value of n was selected by

analyzing the accuracy of the wake/sleep identification.

Figure 4 shows the relationship between n and accuracy.

The accuracy increases with n when n is below 4, and

decreases for n above 4. Thus, the value of n was chosen as

4.

2.2.3 Step 3: Preliminary Identification of Wake/Sleep

State

The wake/sleep state was identified by setting a threshold,

pth, for the model in Eq. (5). When pðAÞ[ pth, the state is

identified as wake; otherwise, the state is identified as

sleep. The threshold, pth, reflects the probability of the

wake state and the sleep state when the body movement is

at a specific activity intensity; thus, pth was set to 0.5.

2.2.4 Step 4: Elimination of Accidental Factors

Webster et al. [10] proposed a series rescoring method for

their non-real-time algorithm. The proposed real-time

wake/sleep identification algorithm uses the following

rescoring method to eliminate accidental factors. (1) When

the current period is identified as a sleep state, if all seven

previous periods were identified as wake, then the current

period is re-identified as a wake state. (2) When the current

period is identified as a wake state, if all seven previous

periods were identified as sleep, then the current period is

re-identified as a sleep state. (3) The re-identified state is

labeled differently from the other identified states (not

changed during the rescoring process) and is not considered

in the next rescoring process.

The identified wake/sleep state for the wrist algorithm in

Fig. 3a is plotted for a duration of 1 h. The segment above

0 is for the wake state, and that below 0 is for the sleep

state. The identified state was updated in each period

(30 s).

The efficacy of step four is demonstrated in Fig. 5. The

red line represents the real state. Figure 5a, b show the

difference between the identification results before and

after step four (elimination of accidental factors), respec-

tively. The lower segments (-1.5) represent the subject’s

sleep state, obtained from the video recordings. Eliminat-

ing accidental factors corrected some wrongly identified

periods.

2.2.5 Step 5: Posture Analysis (Only Applicable for Chest

Algorithm)

Typically, the posture of an individual during sleep is

prone, supine, or lateral. Thus, the subject’s posture can

also be used for wake/sleep identification. A more reliable

indication of the wake/sleep state was formed by analyzing

the preliminarily wake/sleep state identification using

posture analysis.

Figure 6 shows the orientation of the three-axis micro-

accelerometer with respect to the human body. For the

ideal situation, the X, Y, and Z axes are aligned with the
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elimination of accidental factors (step four)
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vertical, horizontal, and anterior-posterior directions,

respectively. However, the angles are neither equal to zero

nor remain constant for each attachment of the detection

device on the skin. These angles are represented with

hðpitchÞ; uðrollÞ, and wðyawÞ respectively.

The subject’s posture is obtained by first calculating the

angles between the three axes of the accelerometer and the

human body, namely h0ðpitchÞ; u0ðrollÞ, and w0ðyawÞ.
Then, three thresholds are set for the three angles between

the three axes of the accelerometer and the inertial frame,

namely hTHðpitchÞ; uTHðrollÞ, and wTHðyawÞ. The ‘‘up’’

posture and the ‘‘lying’’ posture are then obtained via

comparison.

A three-dimensional rotation can be defined as

yaw ! roll ! pitch with the transition matrix:

Assume that the three axis accelerations for the standing

posture are ½x0 y0 z0�T and those for the supine posture

are ½x00 y00 z00�T . These values can be obtained when the

subject is in a known posture (e.g., standing or supine). For

the ideal situation, these two sets of accelerations should be

½�1 0 0�T and ½0 0 1�T , respectively. The two pos-

sible transitions are:

x0

y0

z0

2
4

3
5 ¼ RyRzRx

�1

0

0

2
4

3
5

x00

y00

z00

2
4

3
5 ¼ RyRzRx

0

0

1

2
4

3
5 ð7Þ

These equations can be solved to get the three angles

h0ðpitchÞ; u0ðrollÞ, and w0ðyawÞ.

roll : u0 ¼ arcsinðy0Þ ð8aÞ

yaw : w0 ¼ arcsin
� y00

cosu

�
ð8bÞ

pitch : h0 ¼ arccos
�
� x0

cosu

�
or h0 ¼ arcsin

�
� z0

cosu

�

ð8cÞ

After thresholds hTHðpitchÞ; uTHðrollÞ, and wTHðyawÞ
have been set, when the acceleration for an arbitrary pos-

ture satisfies these expressions, the posture is ‘‘up’’;

otherwise, it is ‘‘lying’’.

jxj[Mag � cosðh0þhTHÞ
jyj\Mag � sinðu0þuTHÞ
jzj\Mag � sinðh0þhTHÞ

8><
>:

Mag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ð9Þ

These expressions can be written as:

if f�x[ �Mag� cosðh0 þ hTHÞ and ðj�yj[Mag

� sinðu0 þ uTHÞ or j�zj[Mag� sinðh0 þ hTHÞÞ ;
then the lying posture; otherwise; the up posture:

ð10Þ

There were 300 posture measurements for each period

(30 s). If 60 % of the results were ‘‘up’’, the posture for that

period was set to ‘‘up’’; otherwise, the posture was ‘‘lying’’.

2.2.6 Step 6: Final Identification of Wake/Sleep State

for Chest Algorithm

The final wake/sleep state is generated from a combined

analysis of the results of steps four and five.

Figure 7 shows the process used to determine the final

wake/sleep state, which is a comprehensive analysis of

eliminating accidental factors and posture analysis. Y(0)

represents the wake/sleep state of the current period, and

Y(-i) represents the wake/sleep state of the previous per-

iod. The preliminary identification of the wake/sleep state

is modified according to the wake/sleep states of the pre-

vious periods and the posture of the current period. TheFig. 6 Orientation of accelerometer relative to human body
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cos h cosu cos h sinu coswþ sin h sinw cos h sinu sinw� sin h cosw
� sinu cosu cosw cosu sinw

sin h cosu sinu sin h cosw� sinw cos h sinu sin h sinwþ cos h cosw

2
4

3
5 ð6Þ

522 X. Qian et al.

123



value of Y(0) is modified from 0, representing the sleep

state (or 1, representing the wake state), to 0.8 (or -0.2)

when the previous four periods are all the wake state or the

current posture is ‘‘up’’ (or the previous four periods are all

the sleep state). Furthermore, if all the previous seven

periods are the wake state (or all the sleep state), Y(0) is

modified to 1.2 (or 0.2). The final state is identified as the

wake (sleep) state when Y(0) = 1, 0.8, or 1.2 (0, -0.2, or

0.2). The values of -0.2 and 0.8 indicate that the modifi-

cation has lower reliability, whereas 0.2 and 1.2 indicate

that the modification has higher reliability.

The identified wake/sleep state for the chest algorithm in

Fig. 3b is plotted for a time duration of 1 h. The segment

above 0 is the wake state, and that below 0 is the sleep

state. The identified state was updated for each period

(30 s).

The efficacy of posture analysis is demonstrated in

Fig. 8, which shows two examples that show the difference

between the identification results before and after step six.

The higher and lower segments (?2.5 and -1.5) represent

the subject’s wake and state states, respectively, obtained

from the video recordings. The posture analysis corrected

most of the incorrectly identified periods when the subject

was ‘‘sitting and reading’’ or was ‘‘on the bed and awake’’.

One result is that more periods were identified or

misidentified as the wake state, which gives a higher sen-

sitivity, as shown in Fig. 8b, d. Note that a higher sensi-

tivity with less specificity is better for the wake/sleep

identification algorithm for PD patients because the

consequence of delivering stimulation to patients when

periods are misidentified as the wake state is not as serious

as withholding stimulation when periods are misidentified

as the sleep state. The stimulation is to be delivered con-

tinuously while the patient is awake.

2.3 Analysis of Wake/Sleep Identification Algorithm

After Each Step

Acceleration data of the training group was used to deter-

mine the wake/sleep identification algorithms for the chest

and the wrist. The parameters in the algorithms were

determined when the identified wake/sleep states agreed

with the actual states at the highest accuracy. The param-

eters of the model in Eq. (5) for the wrist and the chest are

respectively:

pðAÞ ¼ PðY ¼ 1jwrist activity intensityÞ

¼ 1

54
ðA�4 þ 2�A�3 þ 5�A�2 þ 8�A�1 þ 11�A0Þ

ð11Þ

pðAÞ ¼ PðY ¼ 1jchest activity intensityÞ

¼ 1

50
ðA�4 þ 2�A�3 þ 3�A�2 þ 4�A�1 þ 15�A0Þ

ð12Þ

Figure 9 shows an example of the 9-h wake/sleep

identification using the chest algorithm for one subject. The

identified wake/sleep state is plotted for each period, and

Fig. 7 Process for calculating

final wake/sleep state in chest

algorithm
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the actual states obtained from the video recordings are

plotted as well. The identified state (the segment above 0)

represents the wake state of each period, and the identified

state (the segment below 0) represents the sleep state of

each period. The actual states are represented by the higher

and lower segments (?2.5 and -1.5).

The efficacy of the wake/sleep identification algorithm

was also analyzed statistically. The data from the seven

healthy young subjects in the validation group were used to

analyze the performance of the algorithm after step three

(preliminary wake/sleep state identification), step four

(elimination of accidental factors), and step five (posture

analysis). Figure 10 compares the sensitivity and speci-

ficity after each step. The three symbols represent the

performance after step three (*), step four (4), and step

five (h). The symbols move towards the upper left as the

algorithm proceeds, demonstrating the efficacy of each

step.

3 Results

The real-time wake/sleep identification algorithms for the

chest and wrist were validated on both healthy subjects and

PD patients. Table 2 shows the statistical results for the

healthy subjects, with the average accuracy, sensitivity, and

specificity calculated for the wrist and the chest. All the

indices are higher than 70 % in the healthy subject vali-

dation group. These real-time algorithms achieved perfor-

mance comparable to that of previous wake/sleep

identification studies [5, 20].

A comparison of the algorithms for the wrist and the

chest shows that the chest algorithm has better statistical

results. In both the training group and validation group, the

average accuracy for the chest is higher than those for the

wrist. For the indices of average sensitivity and specificity,

the results for the chest and the wrist are roughly compa-

rable, while the average sensitivity for the chest is more

concentrated than that for the wrist. This implies a more

stable performance of the algorithm for the chest location.

Table 3 shows the statistical results for the twelve PD

patients, six of which had stimulation turned OFF and six
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of which had stimulation turned ON. From The three per-

formance indices are all higher than 75 % for both the

chest and the wrist. Thus, the real-time wake/sleep identi-

fication algorithm gives good performance for the PD

patients. In addition, the chest indices are all higher than

80 % and all higher than those for the wrist, which again

demonstrates the good performance of the algorithm for the

chest.

The influence of DBS on the algorithm performance was

studied by dividing the PD patients into DBS ON and DBS

OFF groups. From Table 3, when DBS was OFF, the

sensitivity was 82.68 %, which means that the algorithm

correctly identified the wake state and the stimulation was

turned on during the wake state. When DBS was ON, the

specificity was 82.08 %, which means that the algorithm

correctly identified the sleep state and the stimulation was

turned off. The good performance in both the DBS ON and

DBS OFF scenarios shows that closed-loop DBS should be

effective.

The proposed real-time wake/sleep identification algo-

rithm has good performance, with high accuracy, sensi-

tivity, and specificity. This real-time algorithm has

accuracy comparable to that of previous non-real-time

wake/sleep identification algorithms. Sazonov et al. [20]

reported accuracies of 77–92 % for the wake/sleep state of

infants with a detection device on the diaper. Watanabe [5]

demonstrated a noncontact pneumatic method for sleep

stage estimation that had a 70.5 % identification rate of the

wake state. The present study is the first to identify the

wake/sleep state by measuring body movement at the chest

below the clavicle.

The proposed wake/sleep identification algorithm is

very flexible, which promises good performance for a wide

range of subjects. Several parameters in the algorithm can

be modified to provide flexibility, such as the pthrd
threshold for pðAÞ and thresholds for the three angles in

step five (posture analysis). Different subjects can have

different hTH ; uTH , and wTH thresholds for their typical

‘‘up’’ and ‘‘lying’’ postures. This algorithm is also appli-

cable for different types of subject, including healthy

young adults and PD patients with DBS ON or OFF.

4 Discussion

This study demonstrated a simple, reliable method for

identifying wake/sleep states based on body movements

from the chest below the clavicle. Body movement iden-

tification has several advantages over EEG feedback. One

is that identification based on body movements has high

accuracy (91–93 %) [15], comparable to that obtained

using PSG. The second advantage is that the body move-

ment method makes no additional constraints on the sub-

ject’s daily activities. The subject only needs to wear a

Table 2 Statistical results for

young and old subjects
Location No. of subjects Actual state Identified state Mean ± SD (%)

Wake Sleep Acc. Sen. Spe.

Wrist Training: 2 Wake 339a 48 83.06 87.60 82.06

Sleep 318 1455 ±0.84 ±5.21 ±0.10

Validation: young 7 Wake 1365 550 82.41 71.28 86.18

Sleep 780 4865 ±3.24 ±14.20 ±3.69

Old 4 Wake 1874 352 81.78 84.19 79.23

Sleep 435 1659 ±6.45 ±15.83 ±2.69

Chest Training: 2 Wake 669 70 84.68 90.50 81.69

Sleep 261 1160 ±1.69 ±3.64 ±3.14

Validation: young 7 Wake 1554 352 85.95 81.53 87.44

Sleep 710 4944 ±4.26 ±7.32 ±5.15

Old 4 Wake 482 179 82.89 72.92 84.70

Sleep 560 3099 ±1.50 ±3.37 ±2.17

a Unit: Number of periods (30 s/period)

Table 3 Algorithm

performance for PD patients
Condition Location Accuracy (%) Sensitivity (%) Specificity (%)

DBS OFF Wrist 82.45 ± 9.17 75.58 ± 10.15 82.79 ± 12.06

Chest 82.74 ± 6.00 82.68 ± 10.50 82.28 ± 9.12

DBS ON Wrist 80.32 ± 4.63 75.26 ± 11.96 84.73 ± 8.21

Chest 85.78 ± 7.80 84.21 ± 10.69 82.08 ± 8.69
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small detection device, which does not interfere with the

subject’s daily life. The PSG method is more complex,

with EEG requiring multiple electrodes on the scalp and a

heavy restraint over the subjects. The third advantage is

that the great progress in microelectromechanical systems

allows detection device miniaturization. Various micro

inertial sensors with many features, such as accelerometers

and gyroscopes, are widely used to measure body move-

ments. These developments in the underlying technologies

are leading to rapid progress in implantable medical

devices. The small size and simple design of the sensor

module presented in this study make it applicable to a

closed-loop deep brain stimulator based on wake/sleep

identification.

The results demonstrate better performance of the

algorithm on the chest. These results suggest the feasibility

of closed-loop DBS with a wake/sleep identification

module implanted subcutaneously in the chest, feeding

directly into the pulse generator. Furthermore, the chest

location has higher sensitivity. Since the sensitivity

describes the ability of the algorithm to correctly identify

the wake state, the algorithm for the chest location is more

suitable for closed-loop DBS.

Most importantly, this study shows the importance of

the closed-loop deep brain stimulator design. The excellent

performance of the real-time wake/sleep identification

algorithm for the chest location is promising for future

closed-loop DBS applications. The wake/sleep identifica-

tion module can be designed directly into the implantable

pulse generator, with the stimulations adapting automati-

cally to the patient’s wake/sleep state. For example, when

the patient is in the sleep state, the stimulation is turned off

or the stimulation amplitude is reduced; when the patient is

in the wake state, the stimulation is turned on.

Other issues related to the efficacy of the closed-loop

DBS should be taken into account in future research.

Firstly, the performance of the algorithm on patients with

rigidity should be analyzed. Different from tremors, it is

difficult to use actigraphy to differentiate rigidity and the

sleep state. Further validation should be carried out. For

example, subjects could be divided into two categories,

those with rigidity and those with tremors. Secondly, the

influence of the delayed electrical stimulation mode should

be carefully studied. The delay time of the algorithm

should be controlled to be in a specific range. The delayed

action of turning DBS on or off should also be studied

before putting closed-loop DBS into use.

The proposed method can also be implemented in other

medical devices. For example, with a wireless communi-

cation module, the wake/sleep identification can trigger an

alarm to deal with an emergency at night. This is extremely

useful for nurses watching patients with movement dis-

abilities during the night. The accelerometer-based system

can also be used to detect falls of the elderly and sound an

alarm for help.

There are some limitations in this study. First, the results

were not compared with those obtained using PSG because

of the inconvenience for the PD patients in the hospital.

Video was used as the evaluation criterion instead, which is

accurate but slightly less so than PSG. The memories of the

wake/sleep states in the last night of the subjects them-

selves or their accompanying family members were refer-

enced. The subjects were also asked to use a self-rating

scale of sleep the following morning. Second, the real-time

wake/sleep identification algorithm for the chest data

includes posture analysis based on the movement of the

chest below the clavicle. It is important to get the exact

pitch, roll, and yaw angles to compute the posture state.

The device was not equipped with a gyroscope, which

could be used to directly derive the pitch, roll, and yaw

angles for comparison with the calculated posture angle. In

the posture analysis process, the angle threshold for each

individual is required because its value for the body ‘‘up’’

or ‘‘lay’’ posture varies with subject. The results show that

the posture analysis proved conducive to the judgment and

improved the wake/sleep state detection accuracy.

5 Conclusion

This study demonstrated real-time wake/sleep identifica-

tion algorithms for the chest and the wrist. The algorithms

were tested on both healthy adults and PD patients to show

their effectiveness. The accuracy, sensitivity, and speci-

ficity for the chest location were all higher than 80 %,

which is comparable to results reported in other studies.

This research provides a practical method for closed-loop

deep brain stimulators, which will greatly benefit patients

with PD.
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