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Objective: In the treatment of Parkinson’s disease for deep brain stimulation (DBS), the subthalamic nucleus (STN) is the most
important target on a specific brain nucleus. Although procedural details are well established, targeting STN remains problematic
because of its variable location and relatively small size.

Materials and Methods: Data were collected from 10 patients with Parkinson’s disease implanted with deep brain stimulation
devices. This paper presents an automated algorithm for 3.0T magnetic resonance (MR) image segmentation using the level set
method to reconstruct the STN based on automatic segmentation. Implicit polynomial surfaces are used for the reconstruction of
the STN segmentation.

Results: The method was applied to 10 Parkinson’s disease (PD) patients to automatically extract and rebuild the STN. A
comparison of the Euclidean distances and dice overlap coefficient showed no significant differences with the segmentation-
based method, with the present method having smaller prediction errors and being more robust than expert systems.

Conclusions: This paper presents an automated algorithm to segment and reconstruct the small human STN using MR images.
This method for STN should provide an effective method for advancing STN localization and direct visualization.
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INTRODUCTION

High-frequency deep brain stimulation (DBS) of the subthalamic
nucleus (STN) is an effective treatment for advanced Parkinson’s
Diseases (PD) (1). The therapeutic benefits of DBS in reducing motor
function-related symptoms are closely related to the placement
accuracy of the DBS electrodes in the motor subregion of the STN
(2). Secondary side-effects of the stimulation may occur depending
on the location and trajectory of the electrodes (3). Medical imaging
is usually used to assist the process to better localize the targeted
nucleus. Magnetic resonance imaging (MRI) is one of the most com-
monly used modalities due to its good image contrast and spatial
resolution (4,5).

Several anatomical and physiological targeting methods are
commonly used for localization of the STN. Anatomical methods
include both direct and indirect techniques. Direct targeting
involves specific T2-weighted MRI sequences that enable visualiza-
tion of the STN boundaries (6). The indirect methods are based on
brain atlases and typically use the anterior commissure (AC) and the
posterior commissure (PC) as internal landmarks to co-register the
atlas with the patient, such as the Schaltenbrand–Wahren atlas (7).
However, there are several limitations in this method. First, exact
localization of the electrode within the STN should provide the best
efficacy for PD (8–10), but the STN is not readily visible in conven-
tional MR images. Locating subregions of the STN in the images is
even more challenging. Second, the human STN has morphometric
variations between individuals (2,11), so localization based on

atlases can generate errors from patient to patient. During surgery,
the precise stimulation site can be refined using physiological
microelectrode recording (MER) (12,13), but repeated MER are nec-
essary to delineate the STN borders. These increase the operation
duration as well as the risk of bleeding (14). Therefore, a better way
to precisely localize the nucleus is still needed. Segmentation and
reconstruction of the STN based on MR imaging can obtain intuitive
perspectives of the STN, understand the relationship between
therapeutic effect and electrode placements (15), and adapt to indi-
vidual differences. This can facilitate neurosurgeons to precisely
locate preoperative STN and provide clinical guidance for reducing
the repeated intraoperative adjustments as well as the risk of bleed-
ing. Thus, MRI can help neurosurgeons obtain more information
about the anatomic localization and morphological features to
further aid precise localization of the electrode.
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There are two main approaches for the segmentation and recon-
struction of the STN. The first one relies on manually delineating its
contour on individual slices and then reconstructing the STN. Shen
et al. (7) visualized an STN using this method. The second is atlas
based, with the STN first segmented manually for a subject by expe-
rienced experts to form an STN atlas, with another STN then seg-
mented using this atlas through a fusion scheme. Xiao et al. (2,16)
used the majority-voting label-fusion method to segment an STN
based on an atlas formed by manual segmentations. These methods
are based on manual segmentation of the STN, but a presurgery
scanner can provide only one MR image with clear STN boundaries
in only one direction. This can make accurate segmentation and
reconstruction of STN challenging. Although some researchers have
attempted visualization analyses (12,13,17,18), there is a lack of
automated segmentation and reconstruction methods for the STN
based on MRI.

This study investigates automated segmentation and reconstruc-
tion of STN directly visualized by 3T T2W MR imaging. The system
used automated segmentation based on the level set method to
identify the STN instead of manual contour identification. Level set
methods are a conceptual framework that use level sets as a tool for
numerical analyses of surfaces and shapes that can be easily used to
follow shapes that change topology (19–22). The location of the STN
in stereotactic space was based on automated reconstruction using
automated segmentation to obtain more in-depth and intuitive per-
spectives of the STN that can provide clinical guidance for effective
anatomical localization of the STN.

MATERIALS AND METHODS
MRI Acquisition

Ten patients with PD (six men, four women, 64.1 ± 6.3 years) who
were being treated with STN DBS procedures were scanned before

surgery. The unified Parkinson’s disease scale (UPDRS III) scores were
evaluated as 18.80 ± 11.28 and 42.60 ± 20.92 with and without
medication. MRI of the brains was performed with a 3.0T MR scanner
(GE medical systems, Tiantan Hospital, Beijing, China). The frame-
based T2 FSE MRIs (TR = 3140 ms, TE = 97 ms, matrix = 512 × 512,
thickness = 3 mm, FOV = 240 mm) included 15 coronal slices and 20
axial slices. Frame-based T1 MRIs were obtained (TR = 6.9 ms, TE =
1.6 ms, matrix = 512 × 512, thickness = 3 mm, FOV = 240 mm, 20
axial slices) to determine the brain space. Twenty microelectrode
recordings were obtained from 10 patients undergoing STN implan-
tation for DBS.

Automatically Segmentation Algorithm
The STN was automatically segmented by analyzing the MR

image intensity to generate a binary image with the threshold
determined by the maximum likelihood estimate (MLE) method
(23). A grid including the STN region was set up and labeled on the
central zone of the binary image. The initial contour was delineated
by the grid and used to begin the STN segmentation using the level
set method.

Initial STN Contour
Automatic acquisition of the initial contour was a key step in the

algorithm shown in Figure 1. Firstly, because the STN usually
appeared as a dark region in the T2-weighted images, the STN could
be roughly separated from the surroundings by whole image
binarization. The maximal expectation of the intensity of the gray
matter, which includes the STN, was determined using the MLE
method and used as the initial threshold, T0. The intensity of each
pixel was set to zero if the intensity was less than T0, otherwise, the

Figure 1. Contour element diagrams. a. Raw image. b. Image binarization. c. and d. Extraction of regions of interest and STN regions. e. Initial contours. R, right;
P-posterior. STN, subthalamic nucleus.

Figure 2. Segmentation identification. a. Extraction of STN regions and the initial contours; b. the initial seeds of region growing method; c. segmentation results
of region-growing method. R, right; P, posterior. STN, subthalamic nucleus.
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intensity was set to the maximum. Secondly, the STN region, an m ×
n grid, was then extracted according to the morphological charac-
teristics. The region area, S, consisting of all pixels with intensities of
zero, was then calculated. For any i ∈ [1,m], j ∈ [1,n], the average
density of region(i, j), Ni,j, was the total number of pixels in that
region with an intensity of zero. Subregion(i, j) was labeled 1 if Ni,j ≥
N, N being the average intensity of the entire set to identify the
subregion which includes the STN boundaries, otherwise,
subregion(i,j) was labeled −1. The red nuclei (RN) regions could be
extracted from the relative positions of the RN and STN. Finally, for
any i ∈ [1, m], j ∈ [1, n], an element, Ii,j, of the initial contour I was
determined as Ii,j belonged to the initial contour if either Ii−1,j or Ii+1,j

was of opposite signs or Ii,j−1and Ii,j+1are of opposite signs. The center
of Ii,j represented the element position, so the center belonged to

the initial contour point set. The initial contour I included the right
contour Ir and the left contour Il. If Ir or Il was Φ, the above steps were
repeated until both Ir and Il were not Φ. All the points in I formed the
initial contour C. The center of the set Ir and Il were used as seeds and
the STN region in the binary image was obtained using region-
growing method (24) in Figure 2. The right STN area Sr in the binary
image was the sum of all pixels in the right STN region and the left
STN area Sl was the sum of all pixels in the left STN region. The right
and left STN areas were taken as standards to judge the final seg-
mentation results.

Level Set Method
The final STN contour was found using the level set method. Chan

and Vese (21) used a model for active contours (CV model) to detect
objects in a given image through minimizing the Mumford–Shah

Figure 3. Segmentation of axial and coronal images. a. and e. Raw images. b. and f. Initial level set function at levels −2, 0, 2. c. and g. Final level set function contours.
d. and h. Zero-level contours overlaid on the images. R, right; P, posterior; I, inferior.

Figure 4. Front views of the reconstructed STN and STN targets. The red point
is the expert’s STN target. The green points show the MER locations from 2.5 mm
to about 0.5 mm below the red point in left STN with the electrode finally
located 0.5 mm below. Intraoperative testing showed that the therapeutic ben-
efits were significantly improved with no obvious side-effects. The black point is
the target given by the present method. The intersection angle between the
electrode trajectory and the AC-PC plane was about 60 degrees while that
relative to median sagittal plane was about 15 degrees. AC, anterior commis-
sure; MER, microelectrode recording; PC, posterior commissure; STN, subtha-
lamic nucleus. Figure 5. Dice overlap coefficient.
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functional for segmentation. The CV model used a narrow limited
(NL) method for localizing active contours to interact with one
another to segment the image (22). Let Ω ⊂ R2 be an image domain
and I : Ω → R be a given image. Let ϕ : Ω → R be a level set function
on the domain Ω. Let R(x, y) mask a narrow band region which will
be 1 when point y is within a ball of the radius R centered at x,
otherwise 0. An energy function was defined as in the Lankton
method as

E R x y F y u u dydx x dxx

yx C x Cy

φ μ φ( ) = ( ) ′ ′( ) + ∇ ( )
∈∈ ∈
∫∫ ∫, , ,1 2

Ω
(1)
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2
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internal energy, ′u1 is the intensity mean of the interior of level
contour C within R(x, y), ′u2 is the intensity mean of the exterior of
the level contours, and μ > 0 is a constant. The second term kept the
contour smooth.

A double-well potential function (25) was used to ensure the
accuracy of the curve and to keep the narrow band smooth,
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The energy function in Equation (1) can then be changed to:

E R x y F y u u dydx p x dxx

yx C x Cy

φ μ φ( ) = ( ) ′ ′( ) + ∇ ( )( )
∈∈ ∈
∫∫ ∫, , ,1 2

Ω
(3)

The energy function was minimized with respect to ϕ by calculat-
ing the gradient flow function using the standard gradient descent

method to calculate the level set function with the zero level con-
tours as the boundaries of the segmentation results. When the right
or the left area of the result was less than the area in same side of the
binary image, the above steps were repeated. When both side areas
of the result were greater than the area in same side of the binary
image, the result was the final automatic segmentation.

Three-Dimensional Reconstruction of the STN
The three-dimensional reconstruction process included auto-

matic segmentation, registration, interpolation, and reconstruction
of the STN. First, the STN contours were established on the axial and
coronal slices using the automated segmentation and matched
using the landmarks of the stereotactic frame. Second, the STN con-
tours on the axial slices were interpolated relative to the minor axis
of the STN on the coronal slice along the z-coordinate direction.
Finally, the contours on the axial slices were reconstructed using the
level set method by fitting implicit polynomial surfaces (26).

Evaluation of the Automatic Segmentation and
Reconstruction Method

The segmentation and reconstruction depend on the choice of
the coordinate space. In stereotactic neurosurgeries, the commis-
sure points are frequently used as landmarks to infer the location of
the subcortical structures. The midpoint of the anterior commissure
(AC) and the posterior commissure (PC) is viewed as an origin in the
coordinate system. The x-coordinate is defined as the lateral-medial
distance, the y-coordinate as the anterior-posterior distance, and
the z-coordinate as the superior-inferior distance. Fame-based coor-
dinates were transformed into AC-PC coordinates as a way to correct
for frame placement and to compare different patients.

The automatic segmentation method was used to delineate and
reconstruct the STN. The results compared with MER of the STN as
the gold standard. The automatic and manual segmentations were
evaluated based on: 1) the position of the STN targets with the
expert and automatic segmentation; and 2) the Euclidean distances
between the positions in the MER and the automatic segmentation
between the positions in the MER and manual segmentation. In

addition, the dice overlap coefficient is defined as: DSI
S T

S T
= ∩

+
2

,

where |S| and |T| denote the number of pixels in the manual and
automatic segmentation and |S∩T| denotes the number of pixels in
the overlay of the two segmentation results (2,7).

RESULTS
Automatic Segmentation and Reconstruction of the STN

The axial and coronal image segmentation results from our
method are shown in Figure 3. The green curves (Fig. 3b,f ) are the
initial contours while the red curved regions (Fig. 3d,h) are the final

Table 1. Position Coordinates Given by the MER, Expert, and Automatic Segmentation.

STN MER Expert Present method
Right Left Right Left Right Left

Lateral (mm) 13.4 ± 1.2 11.7 ± 1.6 13.2 ± 1.3 11.3 ± 1.7 13.2 ± 1.3 11.5 ± 1.5
AP (mm) 2.6 ± 1.1 2.7 ± 1.1 2.6 ± 1.1 2.7 ± 1.1 2.6 ± 1.0 2.8 ± 1.1
Vertical (mm) 4.2 ± 2.4 4.0 ± 2.5 5.1 ± 2.1 5.1 ± 2.2 3.8 ± 2.1 3.9 ± 2.3

MER, microelectrode recording; STN, subthalamic nucleus.

Figure 6. Euclidean distance validation.
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segmentation results. In Figure 3c,g are plots of the final level set
function after the evolution while the black contours are the zero-
level contours of the level set function. Figure 4 shows the three-
dimensional view of the reconstructed STN in AC-PC aligned space.
The morphological features of the STN on the brain can be visual-
ized directly in three-dimensional space. The dice overlap coeffi-
cient of the right STN between the manual and automatic
segmentation results shown in Figure 5 is 0.86 ± 0.05 while the left
STN is 0.88 ± 0.04.

The axial and coronal image segmentation results show the STN
position in three dimensions. These coordinates were then
translated into the AC-PC aligned space. The patients were also
analyzed by an expert to select the STN. The STN target position is
an important measurement for the segmentation results. Starr (27)
gave the position as 12 mm lateral, 2 mm posterior, and 4 mm infe-
rior to the MC point as the center of STN in brain space. The average
STN positions given by the various methods are listed in Table 1. The
average positions are more lateral and more posterior in the brain
space than the MER location. The Euclidean distance in Figure 6
shows no statistical significance (p = 0.47), with our method having
smaller prediction errors than the expert.

DISCUSSION

STN-DBS surgery has been accepted as a long-term therapeutic
option for patients with advanced PD. A therapeutic outcome

largely relies on accurate localization of this lead. However, this pro-
cedure remains challenging for neurosurgeons because of the small
size of the target deep inside the human brain that is surrounded by
various vital structures (13). Automatic segmentation and recon-
struction of the STN using 3T MRI can provide direct visualization
and increase target precision. Therefore, it may be helpful for the
neurosurgeons to automatically locate preoperative STN, better
perform the surgery, and reduce the repeated intraoperative adjust-
ments as well as the risk of bleeding.

Figure 7 compares the present method with results of the NL
method (22) and the CV model (21). Figure 7a shows the raw image
while Figure 7b shows the initial contour. Figure 7c shows the seg-
mentation result of the current method while Figure 7d shows the
NL method result. Their result is obtained when each point on the
curve is located such that the local interior and exterior about each
point along the curve minimizes the energies in the local region
(21). Their method uses distance regularization to move every point
forward and backward along the curve. Figure 7e shows the result
of the global CV model that is very sensitive to the edge position.
The CV model leads to a false segmentation because the STN region
intensity is not constant and the STN edge is not distinct. The results
show that the current method is more effective than the other
methods.

Automatic Segmentation
The results show that the method is robust to the initial curve

placement. The initial contours may cross and go beyond the

Figure 7. Comparison of results from various algorithms. a. Raw image. b. Initial contour. c. Segmentation result of present method. d. NL result. e. CV result. NL,
narrow limited.

Figure 8. Comparison of segmentation results based on various initial contours.

5
AUTOMATED SEGMENTATION AND RECONSTRUCTION OF STN

www.neuromodulationjournal.com Neuromodulation 2015; ••: ••–••© 2015 International Neuromodulation Society

AUTOMATED SEGMENTATION AND RECONSTRUCTION OF STN

www.neuromodulationjournal.com VC 2015 International Neuromodulation Society Neuromodulation 2016; 19: 13–19

1
7



boundaries of the STN or even contain obvious edges from neigh-
boring nuclei. The method in this paper uses the level set method to
segment the STN region from human brain MR images using an
arbitrary initial shape that is related to the image intensity, such as a
triangle, a quadrangle, a pentagon, and a line. The red curves in
Figure 8 are the segmentation results. During the contour evolution,
the contours expand and shrink until they stop at the right bound-
aries. The analysis and dice overlap coefficients in Figure 5 show that
the method is quite robust.

STN Visualization
There have been many reports on visualization of the STN.

However, these reports were all based on manual segmentation of
the STN which takes much time and labor. The STN DBS can have
side-effects depending on the location and trajectory of the elec-
trodes because the DBS are implanted to the dorsolateral (motor)
part of the STN (3,28). Presurgery scanners acquire limited axial
slices with clear STN boundaries, but they do not give enough
information to precisely reconstruct the STN by manual method
(7) and atlas-based method (2,11). High-field MRI and MER can
directly visualize and precisely locate the STN (12,13,17,18), but
they cannot ascertain the correct region for the electrodes. There-
fore, some centers use mulitple microelectrodes to delineate the
STN borders during surgery for targeting precision (29). MRI-
guided STN DBS without microelectrode recording can lead to
substantial mean improvements in the motor disability of PD
patients with improved quality of life due to its mean location
errors of 1.3 mm in 79 DBS surgical cases (30). The Euclidean dis-
tances indicate that the present method has no significant differ-
ence, with this method being more robust than experts.
Preoperative reconstruction using MR sequences will allow sur-
geons to precisely assess the positions of target structures and
prepare an operation plan that reduces the repeated adjustments
using intraoperative MER.

CONCLUSIONS

This paper presents an automated algorithm to segment
and reconstruct the small human STN using high-field MR images.
The method can effectively help surgeons directly visualize
and locate the STN so that they can prepare appropriate surgery
plans. The robustness and effectiveness were verified by compari-
sons to manual STN segmentation and reconstruction. This
method for STN segmentation and reconstruction should provide
an effective method for advancing STN localization and direct
visualization.
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